
什么是大數(shù)據(jù)分析
大數(shù)據(jù)分析是指對(duì)規(guī)模巨大的數(shù)據(jù)進(jìn)行分析。大數(shù)據(jù)可以概括為5個(gè)V, 數(shù)據(jù)量大(Volume)、速度快(Velocity)、類(lèi)型多(Variety)、價(jià)值(Value)、真實(shí)性(Veracity)。
大數(shù)據(jù)作為時(shí)下最火熱的IT行業(yè)的詞匯,隨之而來(lái)的數(shù)據(jù)倉(cāng)庫(kù)、數(shù)據(jù)安全、數(shù)據(jù)分析、數(shù)據(jù)挖掘等等圍繞大數(shù)據(jù)的商業(yè)價(jià)值的利用逐漸成為行業(yè)人士爭(zhēng)相追捧的利潤(rùn)焦點(diǎn)。隨著大數(shù)據(jù)時(shí)代的來(lái)臨,大數(shù)據(jù)分析也應(yīng)運(yùn)而生。
大數(shù)據(jù)分析包含那些方面
1. 可視化分析
不管是對(duì)數(shù)據(jù)分析專(zhuān)家還是普通用戶(hù),數(shù)據(jù)可視化是數(shù)據(jù)分析工具最基本的要求。可視化可以直觀的展示數(shù)據(jù),讓數(shù)據(jù)自己說(shuō)話,讓觀眾聽(tīng)到結(jié)果。
2. Data Mining Algorithms(數(shù)據(jù)挖掘算法)
可視化是給人看的,數(shù)據(jù)挖掘就是給機(jī)器看的。集群、分割、孤立點(diǎn)分析還有其他的算法讓我們深入數(shù)據(jù)內(nèi)部,挖掘價(jià)值。這些算法不僅要處理大數(shù)據(jù)的量,也要處理大數(shù)據(jù)的速度。
3. Predictive Analytic Capabilities(預(yù)測(cè)性分析能力)
數(shù)據(jù)挖掘可以讓分析員更好的理解數(shù)據(jù),而預(yù)測(cè)性分析可以讓分析員根據(jù)可視化分析和數(shù)據(jù)挖掘的結(jié)果做出一些預(yù)測(cè)性的判斷。
4. Semantic Engines(語(yǔ)義引擎)
我們知道由于非結(jié)構(gòu)化數(shù)據(jù)的多樣性帶來(lái)了數(shù)據(jù)分析的新的挑戰(zhàn),我們需要一系列的工具去解析,提取,分析數(shù)據(jù)。語(yǔ)義引擎需要被設(shè)計(jì)成能夠從“文檔”中智能提取信息。
5. Data Quality and Master Data Management(數(shù)據(jù)質(zhì)量和數(shù)據(jù)管理)
數(shù)據(jù)質(zhì)量和數(shù)據(jù)管理是一些管理方面的最佳實(shí)踐。通過(guò)標(biāo)準(zhǔn)化的流程和工具對(duì)數(shù)據(jù)進(jìn)行處理可以保證一個(gè)預(yù)先定義好的高質(zhì)量的分析結(jié)果。
假如大數(shù)據(jù)真的是下一個(gè)重要的技術(shù)革新的話,我們最好把精力關(guān)注在大數(shù)據(jù)能給我們帶來(lái)的好處,而不僅僅是挑戰(zhàn)。
6.數(shù)據(jù)存儲(chǔ),數(shù)據(jù)倉(cāng)庫(kù)
數(shù)據(jù)倉(cāng)庫(kù)是為了便于多維分析和多角度展示數(shù)據(jù)按特定模式進(jìn)行存儲(chǔ)所建立起來(lái)的關(guān)系型數(shù)據(jù)庫(kù)。在商業(yè)智能系統(tǒng)的設(shè)計(jì)中,數(shù)據(jù)倉(cāng)庫(kù)的構(gòu)建是關(guān)鍵,是商業(yè)智能系統(tǒng)的基礎(chǔ),承擔(dān)對(duì)業(yè)務(wù)系統(tǒng)數(shù)據(jù)整合的任務(wù),為商業(yè)智能系統(tǒng)提供數(shù)據(jù)抽取、轉(zhuǎn)換和加載(ETL),并按主題對(duì)數(shù)據(jù)進(jìn)行查詢(xún)和訪問(wèn),為聯(lián)機(jī)數(shù)據(jù)分析和數(shù)據(jù)挖掘提供數(shù)據(jù)平臺(tái)。
大數(shù)據(jù)分析的常用方法
1、聚類(lèi)分析(Cluster Analysis)
聚類(lèi)分析指將物理或抽象對(duì)象的集合分組成為由類(lèi)似的對(duì)象組成的多個(gè)類(lèi)的分析過(guò)程。聚類(lèi)是將數(shù)據(jù)分類(lèi)到不同的類(lèi)或者簇這樣的一個(gè)過(guò)程,所以同一個(gè)簇中的對(duì)象有很大的相似性,而不同簇間的對(duì)象有很大的相異性。聚類(lèi)分析是一種探索性的分析,在分類(lèi)的過(guò)程中,人們不必事先給出一個(gè)分類(lèi)的標(biāo)準(zhǔn),聚類(lèi)分析能夠從樣本數(shù)據(jù)出發(fā),自動(dòng)進(jìn)行分類(lèi)。聚類(lèi)分析所使用方法的不同,常常會(huì)得到不同的結(jié)論。不同研究者對(duì)于同一組數(shù)據(jù)進(jìn)行聚類(lèi)分析,所得到的聚類(lèi)數(shù)未必一致。
2、因子分析(Factor Analysis)
因子分析是指研究從變量群中提取共性因子的統(tǒng)計(jì)技術(shù)。因子分析就是從大量的數(shù)據(jù)中尋找內(nèi)在的聯(lián)系,減少?zèng)Q策的困難。因子分析的方法約有10多種,如重心法、影像分析法,最大似然解、最小平方法、阿爾發(fā)抽因法、拉奧典型抽因法等等。這些方法本質(zhì)上大都屬近似方法,是以相關(guān)系數(shù)矩陣為基礎(chǔ)的,所不同的是相關(guān)系數(shù)矩陣對(duì)角線上的值,采用不同的共同性□2估值。在社會(huì)學(xué)研究中,因子分析常采用以主成分分析為基礎(chǔ)的反覆法。
3、相關(guān)分析(Correlation Analysis)
相關(guān)分析(correlation analysis),相關(guān)分析是研究現(xiàn)象之間是否存在某種依存關(guān)系,并對(duì)具體有依存關(guān)系的現(xiàn)象探討其相關(guān)方向以及相關(guān)程度。相關(guān)關(guān)系是一種非確定性的關(guān)系,例如,以X和Y分別記一個(gè)人的身高和體重,或分別記每公頃施肥量與每公頃小麥產(chǎn)量,則X與Y顯然有關(guān)系,而又沒(méi)有確切到可由其中的一個(gè)去精確地決定另一個(gè)的程度,這就是相關(guān)關(guān)系。
4、對(duì)應(yīng)分析(Correspondence Analysis)
對(duì)應(yīng)分析(Correspondence analysis)也稱(chēng)關(guān)聯(lián)分析、R-Q型因子分析,通過(guò)分析由定性變量構(gòu)成的交互匯總表來(lái)揭示變量間的聯(lián)系??梢越沂就蛔兞康母鱾€(gè)類(lèi)別之間的差異,以及不同變量各個(gè)類(lèi)別之間的對(duì)應(yīng)關(guān)系。對(duì)應(yīng)分析的基本思想是將一個(gè)聯(lián)列表的行和列中各元素的比例結(jié)構(gòu)以點(diǎn)的形式在較低維的空間中表示出來(lái)。
5、回歸分析
研究一個(gè)隨機(jī)變量Y對(duì)另一個(gè)(X)或一組(X1,X2,?,Xk)變量的相依關(guān)系的統(tǒng)計(jì)分析方法。回歸分析(regression analysis)是確定兩種或兩種以上變數(shù)間相互依賴(lài)的定量關(guān)系的一種統(tǒng)計(jì)分析方法。運(yùn)用十分廣泛,回歸分析按照涉及的自變量的多少,可分為一元回歸分析和多元回歸分析;按照自變量和因變量之間的關(guān)系類(lèi)型,可分為線性回歸分析和非線性回歸分析。
6、方差分析(ANOVA/Analysis of Variance)
又稱(chēng)“變異數(shù)分析”或“F檢驗(yàn)”,是R.A.Fisher發(fā)明的,用于兩個(gè)及兩個(gè)以上樣本均數(shù)差別的顯著性檢驗(yàn)。由于各種因素的影響,研究所得的數(shù)據(jù)呈現(xiàn)波動(dòng)狀。造成波動(dòng)的原因可分成兩類(lèi),一是不可控的隨機(jī)因素,另一是研究中施加的對(duì)結(jié)果形成影響的可控因素。方差分析是從觀測(cè)變量的方差入手,研究諸多控制
數(shù)據(jù)分析咨詢(xún)請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
LSTM 模型輸入長(zhǎng)度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長(zhǎng)序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報(bào)考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代浪潮下,CDA 數(shù)據(jù)分析師認(rèn)證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計(jì)的實(shí)用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強(qiáng)大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶(hù) ...
2025-07-11尊敬的考生: 您好! 我們誠(chéng)摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實(shí)施重大更新。 此次更新旨在確保認(rèn) ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價(jià)值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡(jiǎn)稱(chēng) BI)深度融合的時(shí)代,BI ...
2025-07-10SQL 在預(yù)測(cè)分析中的應(yīng)用:從數(shù)據(jù)查詢(xún)到趨勢(shì)預(yù)判? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代,預(yù)測(cè)分析作為挖掘數(shù)據(jù)潛在價(jià)值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢(xún)結(jié)束后:分析師的收尾工作與價(jià)值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢(xún)結(jié)束)并非工作的終點(diǎn),而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報(bào)考到取證的全攻略? 在數(shù)字經(jīng)濟(jì)蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭(zhēng)搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢(shì)性檢驗(yàn):捕捉數(shù)據(jù)背后的時(shí)間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢(shì)性檢驗(yàn)如同一位耐心的偵探,專(zhuān)注于從單 ...
2025-07-09year_month數(shù)據(jù)類(lèi)型:時(shí)間維度的精準(zhǔn)切片? ? 在數(shù)據(jù)的世界里,時(shí)間是最不可或缺的維度之一,而year_month數(shù)據(jù)類(lèi)型就像一把精準(zhǔn) ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實(shí)戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認(rèn)證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗(yàn):數(shù)據(jù)趨勢(shì)與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準(zhǔn)確捕捉數(shù)據(jù)的趨勢(shì)變化以及識(shí)別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認(rèn)證作為國(guó)內(nèi)權(quán)威的數(shù)據(jù)分析能力認(rèn)證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對(duì)策略? 長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨(dú)特的門(mén)控機(jī)制,在 ...
2025-07-07統(tǒng)計(jì)學(xué)方法在市場(chǎng)調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場(chǎng)調(diào)研是企業(yè)洞察市場(chǎng)動(dòng)態(tài)、了解消費(fèi)者需求的重要途徑,而統(tǒng)計(jì)學(xué)方法則是市場(chǎng)調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書(shū)考試全攻略? 在數(shù)字化浪潮席卷全球的當(dāng)下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動(dòng)力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專(zhuān)業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準(zhǔn)確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動(dòng)力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開(kāi)啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價(jià)值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03