
作者:Python進(jìn)階者
來源:Python爬蟲與數(shù)據(jù)挖掘
前幾天有個粉絲【Lethe】問了一道Pyecharts可視化的問題,如下圖所示。
后來原始數(shù)據(jù)和代碼都給到了,需要幫忙看看。
下面是她自己的代碼,如下所示:
# 可視化部分 import pandas as pd from pyecharts.charts import Map, Page from pyecharts import options as opts # 設(shè)置列對齊 pd.set_option('display.unicode.ambiguous_as_wide', True)
pd.set_option('display.unicode.east_asian_width', True) # 打開文件 df = pd.read_excel('D:python-basepython實訓(xùn)項目文檔國內(nèi)疫情統(tǒng)計表1.xlsx')
locations = [location for location in df['省']]
values = [value for value in df['當(dāng)前確診']]
datas1 = list(zip(locations, values))
data2 = df['省']
data2_list = list(data2) # print(data2_list) data3 = df['當(dāng)前確診']
data3_list = list(data3) # print(data3_list) data4 = df['疑似確診']
data4_list = list(data4)
data5 = df['累計確診']
data5_list = list(data5)
data6 = df['死亡人數(shù)']
data6_list = list(data6)
data7 = df['治愈人數(shù)']
data7_list = list(data7)
a = (
Map()
.add("當(dāng)前確診", datas1, "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=100),
)
)
b = (
Map()
.add("疑似確診", [list(z) for z in zip(data2_list, data4_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
c = (
Map()
.add("累計確診", [list(z) for z in zip(data2_list, data5_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
d = (
Map()
.add("死亡人數(shù)", [list(z) for z in zip(data2_list, data6_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
e = (
Map()
.add("治愈人數(shù)", [list(z) for z in zip(data2_list, data7_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
page = Page(layout=Page.DraggablePageLayout)
page.add(
a,
b,
c,
d,
e,
) # 先生成render.html文件 page.render() # 完成上一步之后把 page.render()這行注釋掉 # 然后循行這下面 '''
Page.save_resize_html("render.html",
cfg_file="chart_config.json",
dest="my_test.html")
'''
后來【此類生物】修改了下代碼,順利解決了問題,代碼如下所示。
# 可視化部分 import pandas as pd from pyecharts.charts import Map, Page from pyecharts import options as opts # 設(shè)置列對齊 pd.set_option('display.unicode.ambiguous_as_wide', True)
pd.set_option('display.unicode.east_asian_width', True) # 打開文件 df = pd.read_excel('國內(nèi)疫情統(tǒng)計表1.xlsx')
locations = [] for location in df['省']: if "廣西" in location:
location = "廣西" if "新疆" in location:
location = "新疆" if "寧夏" in location:
location = "寧夏" if "西藏" in location:
location = "西藏" if "內(nèi)蒙古" in location:
location = "內(nèi)蒙古" else:
location = location.strip("省市")
locations.append(location)
values = [value for value in df['當(dāng)前確診']]
print(values, locations)
datas1 = list(zip(locations, values)) # data2 = locations
data2_list = list(data2)
print(data2_list)
data3 = df['當(dāng)前確診']
data3_list = list(data3) # print(data3_list) data4 = df['疑似確診']
data4_list = list(data4)
data5 = df['累計確診']
data5_list = list(data5)
data6 = df['死亡人數(shù)']
data6_list = list(data6)
data7 = df['治愈人數(shù)']
data7_list = list(data7) # # # a = (
Map()
.add("當(dāng)前確診", datas1, "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=100),
)
) # # # b = (
Map()
.add("疑似確診", [list(z) for z in zip(data2_list, data4_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
c = (
Map()
.add("累計確診", [list(z) for z in zip(data2_list, data5_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
d = (
Map()
.add("死亡人數(shù)", [list(z) for z in zip(data2_list, data6_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
e = (
Map()
.add("治愈人數(shù)", [list(z) for z in zip(data2_list, data7_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
page = Page(layout=Page.DraggablePageLayout)
page.add(
a,
b,
c,
d,
e,
) # 先生成render.html文件 page.render() # 完成上一步之后把 page.render()這行注釋掉 # 然后循行這下面 '''
Page.save_resize_html("render.html",
cfg_file="chart_config.json",
dest="my_test.html")
'''
順利解決問題。
其實就是數(shù)據(jù)處理的問題,關(guān)于這個之前有寫過文章,驚!Pyecharts作圖,發(fā)現(xiàn)無數(shù)據(jù)展示?,感興趣的可以看下,看完之后就一目了然了。
如果有遇到問題,隨時聯(lián)系我解決,歡迎加入我的Python學(xué)習(xí)交流群。
大家好,我是Python進(jìn)階者。這篇文章主要盤點了一道Pyecharts作圖的問題,文中針對該問題給出了具體的解析和代碼實現(xiàn),幫助粉絲順利解決了問題。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學(xué)領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學(xué)計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學(xué)計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務(wù)價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導(dǎo)向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10