
作者:小伍哥
來源:小伍哥聊風(fēng)控
對(duì)于文本處理,tf-idf的使用已經(jīng)非常普遍,在sklearn等知名的機(jī)器學(xué)習(xí)開源庫(kù)中都提供了直接的調(diào)用,然而很多人并沒有搞清楚TF-IDF是怎么算出來的,也就無法對(duì)這種計(jì)算方法進(jìn)行針對(duì)性的改進(jìn)了。我之前也是稀里糊涂的,在各種開源庫(kù)隨手可得的Python年代“調(diào)包需謹(jǐn)慎”,不能讓自己成為只會(huì)調(diào)包的人,我們內(nèi)功還是需要修煉的,計(jì)算之前,我們先了解下tf-idf的基本定義。
tf(term frequency:指的是某一個(gè)給定的詞語(yǔ)在該文件中出現(xiàn)的次數(shù),這個(gè)數(shù)字通常會(huì)被歸一化(一般是詞頻除以該文件總詞數(shù)),以防止它偏向長(zhǎng)的文件。
idf (inverse document frequency):反應(yīng)了一個(gè)詞在所有文本(整個(gè)文檔)中出現(xiàn)的頻率,如果一個(gè)詞在很多的文本中出現(xiàn),那么它的idf值應(yīng)該低,而反過來如果一個(gè)詞在比較少的文本中出現(xiàn),那么它的idf值應(yīng)該高。
一個(gè)詞語(yǔ)的重要性隨著它在文件中出現(xiàn)的次數(shù)成正比增加,但同時(shí)會(huì)隨著它在語(yǔ)料庫(kù)中出現(xiàn)的頻率成反比下降。
下面我們看看大多數(shù)情況下,tf-idf 的定義:
TF的計(jì)算公式如下:
其中
是在某一文本中詞條w出現(xiàn)的次數(shù),
是該文本總詞條數(shù)。
IDF的計(jì)算公式:
其中Y是語(yǔ)料庫(kù)的文檔總數(shù),Yw是包含詞條w的文檔數(shù),分母加一是為了避免
未出現(xiàn)在任何文檔中從而導(dǎo)致分母為
的情況。
TF-IDF的就是將TF和IDF相乘
從以上計(jì)算公式便可以看出,某一特定文件內(nèi)的高詞語(yǔ)頻率,以及該詞語(yǔ)在整個(gè)文件集合中的低文件頻率,可以產(chǎn)生出高權(quán)重的TF-IDF。因此,TF-IDF傾向于過濾掉常見的詞語(yǔ),保留重要的詞語(yǔ)。
現(xiàn)在我們來看看,tf-idf到底怎么計(jì)算的,和我們手算的能不能對(duì)上。
在sklearn中,tf與上述定義一致,我們看看idf在sklearn中的定義,可以看到,分子分母都加了1,做了更多的平滑處理
smooth_idf=False
idf(t) = log [ n / df(t) ] + 1
smooth_idf=True
idf(t) = log [ (1 + n) / (1 + df(t)) ] + 1
下面我們手把手的計(jì)算出TF-IDF的值,使用的是sklearn官方的案例:
corpus = ['This is the first document.', 'This document is the second document.', 'And this is the third one.', 'Is this the first document?'] #初始化 vector = TfidfVectorizer() #tf-idf計(jì)算 tfidf = vector.fit_transform(corpus) #直接打印,得到的是一個(gè)稀疏矩陣,第1位表示文檔編號(hào),第二位代表詞的編號(hào) print(tfidf) (0, 1) 0.46979138557992045 (0, 2) 0.5802858236844359 (0, 6) 0.38408524091481483 (0, 3) 0.38408524091481483 (0, 8) 0.38408524091481483 (1, 5) 0.5386476208856763 (1, 1) 0.6876235979836938 (1, 6) 0.281088674033753 (1, 3) 0.281088674033753 (1, 8) 0.281088674033753 (2, 4) 0.511848512707169 (2, 7) 0.511848512707169 (2, 0) 0.511848512707169 (2, 6) 0.267103787642168 (2, 3) 0.267103787642168 (2, 8) 0.267103787642168 (3, 1) 0.46979138557992045 (3, 2) 0.5802858236844359 (3, 6) 0.38408524091481483 (3, 3) 0.38408524091481483 (3, 8) 0.38408524091481483
通過vocabulary_屬性,可以查看每個(gè)詞對(duì)應(yīng)的數(shù)字編號(hào),就可以與上面的矩陣對(duì)應(yīng)起來了
vector.vocabulary_ {'this': 8, 'is': 3, 'the': 6, 'first': 2, 'document': 1, 'second': 5, 'and': 0, 'third': 7, 'one': 4}
通過上面的字典和矩陣可以知道,第一個(gè)文檔'This is the first document'的tf-idf 值如下
(0, 1) 0.46979138557992045 document (0, 2) 0.58028582368443590 first (0, 6) 0.38408524091481483 the (0, 3) 0.38408524091481483 is (0, 8) 0.38408524091481483 this
document first the is this
0.46979 0.58028 0.384085 0.38408 0.384085
我們手動(dòng)計(jì)算來驗(yàn)證下:
tf 計(jì)算
對(duì)于第一個(gè)文檔,有5個(gè)不同的詞,每個(gè)詞的詞頻為:tf= 1/5
idf計(jì)算
document:log((1+N)/(1+N(document)))+1= log((1+4)/(1+3))+1 = 1.2231435 first :log((1+N)/(1+N(first)))+1 = log((1+4)/(1+2))+1 = 1.5108256 the :log((1+N)/(1+N(the )))+1 = log((1+4)/(1+4))+1 = 1.0 is :log((1+N)/(1+N(is )))+1 = log((1+4)/(1+4))+1 = 1.0 this :log((1+N)/(1+N(this)))+1 = log((1+4)/(1+4))+1 = 1.0
tf-idf計(jì)算
1.2231435*1/5 = 0.24462869 1.5108256*1/5 = 0.30216512 1.0*1/5 = 0.2 1.0*1/5 = 0.2 1.0*1/5 = 0.2
得到我們手工計(jì)算的tf-idf值
和我們sklearn計(jì)算的
答案并不對(duì),哪里出了問題呢?我們仔細(xì)看看原來的代碼,因?yàn)閟klearn做了歸一化,我們按同樣的方法進(jìn)行歸一化計(jì)算如下:
計(jì)算每個(gè)tf-idf 的平方根
(0.24462869**2 + 0.30216512**2 + 0.2**2 + 0.2**2 + 0.2**2)**0.5 = 0.5207177313
對(duì)每個(gè)值除以平方根
0.24462869/0.5207177313244965 = 0.4697913577434035 0.30216512/0.5207177313244965 = 0.5802858282382923 0.20000000/0.5207177313244965 = 0.3840852499708055 0.20000000/0.5207177313244965 = 0.3840852499708055 0.20000000/0.5207177313244965 = 0.3840852499708055
這樣一看,就和我們的sklearn計(jì)算的一致了,到此,我們也算是學(xué)會(huì)了計(jì)算tf-idf值了,加深了對(duì)該方法的理解,以便于后期的算法調(diào)用,心里有貨,才不懼未知。
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫(kù)管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫(kù)表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫(kù)表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫(kù))處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場(chǎng)景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對(duì)象的 text 與 content:區(qū)別、場(chǎng)景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請(qǐng)求開發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫(kù)表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請(qǐng)求工具對(duì)比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請(qǐng)求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營(yíng)問題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營(yíng)銷案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營(yíng)銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價(jià)值 在數(shù)據(jù)驅(qū)動(dòng)決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實(shí)踐到業(yè)務(wù)價(jià)值挖掘 在數(shù)據(jù)分析場(chǎng)景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價(jià)值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡(jiǎn)單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10