
作者:俊欣
來(lái)源:關(guān)于數(shù)據(jù)分析與可視化
也就在前天,南太平洋島國(guó)湯加發(fā)生火山噴發(fā),有專門(mén)的專家學(xué)者分析,這可能是30年來(lái)全球規(guī)模最大的一次海底火山噴發(fā),它引發(fā)的海嘯以及火山灰將對(duì)周邊的大氣、洋流、淡水、農(nóng)業(yè)以及民眾健康等都造成不同程度的影響。
今天小編就用Python當(dāng)中的folium模塊以及其他的可視化庫(kù)來(lái)對(duì)全球的火山情況做一個(gè)分析。
和以往一樣,我們先導(dǎo)入需要數(shù)據(jù)分析過(guò)程當(dāng)中需要用到的模塊并且讀取數(shù)據(jù)集,本次的數(shù)據(jù)集來(lái)自由kaggle網(wǎng)站,主要由美國(guó)著名的史密森學(xué)會(huì)整理所得
import pandas as pd import folium.plugins as plugins import folium
df_volcano = pd.read_csv("volcano.csv")
df_volcano.head()
output
數(shù)據(jù)集包含了這些個(gè)數(shù)據(jù)
df_volcano.columns
output
Index(['volcano_number', 'volcano_name', 'primary_volcano_type', 'last_eruption_year', 'country', 'region', 'subregion', 'latitude', 'longitude', 'elevation', 'tectonic_settings', 'evidence_category', 'major_rock_1', 'major_rock_2', 'major_rock_3', 'major_rock_4', 'major_rock_5', 'minor_rock_1', 'minor_rock_2', 'minor_rock_3', 'minor_rock_4', 'minor_rock_5', 'population_within_5_km', 'population_within_10_km', 'population_within_30_km', 'population_within_100_km'],
dtype='object')
我們通過(guò)調(diào)用folium模塊來(lái)繪制一下全球各個(gè)火山的分布,代碼如下
volcano_map = folium.Map() # 將每一行火山的數(shù)據(jù)添加進(jìn)來(lái) for i in range(0, df_volcano.shape[0]):
volcano = df_volcano.iloc[i]
folium.Marker([volcano['latitude'], volcano['longitude']], popup=volcano['volcano_name']).add_to(volcano_map)
volcano_map
output
上述代碼的邏輯大致來(lái)看就是先實(shí)例化一個(gè)Map()對(duì)象,然后遍歷每一行的數(shù)據(jù),主要針對(duì)的是數(shù)據(jù)集當(dāng)中的經(jīng)緯度數(shù)據(jù),并且在地圖上打上標(biāo)簽,我們點(diǎn)擊每一個(gè)標(biāo)簽都會(huì)自動(dòng)彈出對(duì)應(yīng)的火山的名稱
當(dāng)然出來(lái)的可視化結(jié)果不怎么美觀,我們先通過(guò)簡(jiǎn)單的直方圖來(lái)看一下全球火山的分布情況,代碼如下
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 4))
volcano_country = pd.DataFrame(df_volcano.groupby(['country']).size()).sort_values(0, ascending=True)
volcano_country.columns = ['Count']
volcano_country.tail(10).plot(kind='barh', legend=False, ax=ax1)
ax1.set_title('Number of Volcanoes per Country')
ax1.set_ylabel('Country')
ax1.set_xlabel('Count')
volcano_region = pd.DataFrame(df_volcano.groupby(['region']).size()).sort_values(0, ascending=True)
volcano_region.columns = ['Count']
volcano_region.tail(10).plot(kind='barh', legend=False, ax=ax2)
ax2.set_title('Number of Volcanoes per Region')
ax2.set_ylabel('Region')
ax2.set_xlabel('Count')
plt.tight_layout()
plt.show()
output
可以看到火山主要集中在美國(guó)、印度尼西亞以及日本較多,而單從地域來(lái)看,南美以及日本、中國(guó)臺(tái)灣和印度尼西亞等地存在著較多的火山
接下來(lái)我們來(lái)優(yōu)化一下之前繪制的全球火山分布的地圖,調(diào)用folium模塊當(dāng)中CircleMarker方法,并且設(shè)定好標(biāo)記的顏色與大小
volcano_map = folium.Map(zoom_start=10)
groups = folium.FeatureGroup('') # 將每一行火山的數(shù)據(jù)添加進(jìn)來(lái) for i in range(0, df_volcano.shape[0]):
volcano = df_volcano.iloc[i]
groups.add_child(folium.CircleMarker([volcano['latitude'], volcano['longitude']],
popup=volcano['volcano_name'], radius=3, color='blue',
fill=True, fill_color='blue',fill_opacity=0.8))
volcano_map.add_child(groups)
volcano_map.add_child(folium.LatLngPopup())
output
然后我們來(lái)看一下這次火山的爆發(fā)地點(diǎn),湯加共和國(guó)位于西南太平洋,屬于大洋洲,具體位置是在西經(jīng)175°和南緯20°左右,
import folium.plugins as plugins import folium m = folium.Map([-21.178986, -175.198242], zoom_start=10, control_scale=True, width='80%') m
output
第一個(gè)參數(shù)非常明顯代表的是經(jīng)緯度,而zoom_start參數(shù)代表的是縮放的程度,要是我們需要進(jìn)一步放大繪制的圖表,可以通過(guò)調(diào)整這個(gè)參數(shù)來(lái)實(shí)現(xiàn),而width參數(shù)代表的則是最后圖表繪制出來(lái)的寬度。
我們也可以在繪制出來(lái)的地圖上面打上標(biāo)記,例如畫(huà)個(gè)圓圈,代碼如下
m = folium.Map([-21.178986, -175.198242], zoom_start=12, control_scale=True, width='80%') folium.Circle(location = [-21.177986, -175.199242], radius = 1500, color = "purple").add_to(m) m
output
或者給圈出來(lái)的區(qū)域標(biāo)上顏色,代碼如下
m = folium.Map([-21.178986, -175.198242],
zoom_start=12,
control_scale=True, width='80%')
folium.Circle(location = [-21.177986, -175.199242], radius = 1500,
color = "purple", fill = True, fill_color = "red").add_to(m)
m
output
本次湯加火山爆發(fā)的VEI強(qiáng)度為5-6級(jí),屬于本世紀(jì)以來(lái)最強(qiáng)等級(jí),后面連帶引發(fā)的海嘯影響了太平洋沿岸地區(qū)。太平洋沿岸的智利、日本等國(guó)的潮位站監(jiān)測(cè)到30厘米至150厘米的海嘯波,我國(guó)潮位站最大海嘯波幅在20厘米以下,短期內(nèi)太平洋沿岸國(guó)際航運(yùn)或受到影響,需要重點(diǎn)關(guān)注美豆到港情況。
而從長(zhǎng)期來(lái)看,熱帶火山爆發(fā)或提高全球極端天氣發(fā)生概率,從而影響農(nóng)作物的生長(zhǎng),對(duì)整個(gè)農(nóng)產(chǎn)品的供應(yīng)造成深遠(yuǎn)的影響,而如果火山灰大面積擴(kuò)散,或進(jìn)一步影響全球航空業(yè),降低運(yùn)輸效率,拖累全球供應(yīng)鏈。
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無(wú)論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫(kù)管理中,“大表” 始終是性能優(yōu)化繞不開(kāi)的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫(kù)表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開(kāi)始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫(kù)表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫(kù))處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場(chǎng)景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤(pán)手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對(duì)象的 text 與 content:區(qū)別、場(chǎng)景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請(qǐng)求開(kāi)發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤(pán)手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫(kù)表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請(qǐng)求工具對(duì)比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請(qǐng)求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問(wèn)題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問(wèn)題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營(yíng)問(wèn)題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過(guò)程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營(yíng)銷(xiāo)案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見(jiàn)頂” 的當(dāng)下,精準(zhǔn)營(yíng)銷(xiāo)成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價(jià)值 在數(shù)據(jù)驅(qū)動(dòng)決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實(shí)踐到業(yè)務(wù)價(jià)值挖掘 在數(shù)據(jù)分析場(chǎng)景中,聚類分析作為 “無(wú)監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價(jià)值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡(jiǎn)單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10