
作者:俊欣
來(lái)源:關(guān)于數(shù)據(jù)分析與可視化
前兩篇Pyecharts的文章來(lái)幫我們簡(jiǎn)單的梳理了一下可以用Pyecharts來(lái)繪制哪些圖表之后,本篇文章我們用pyecharts里面的一些組件,將繪制的圖表都組合起來(lái)
首先介紹Pyecharts模塊當(dāng)中的Grid組件,使用Grid組件可以很好地將多張圖無(wú)論是上下組合還是左右組合,都能夠很好地拼接起來(lái),我們先來(lái)看第一個(gè)例子
bar = (
Bar()
.add_xaxis(Faker.choose())
.add_yaxis("商家1", Faker.values())
.add_yaxis("商家2", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts(title="直方圖"))
)
line = (
Line()
.add_xaxis(Faker.choose())
.add_yaxis("商家1", Faker.values())
.add_yaxis("商家2", Faker.values())
.set_global_opts(
title_opts=opts.TitleOpts(title="折線圖", pos_top="48%"),
legend_opts=opts.LegendOpts(pos_top="48%"),
)
)
grid = (
Grid()
.add(bar, grid_opts=opts.GridOpts(pos_bottom="60%"))
.add(line, grid_opts=opts.GridOpts(pos_top="50%"))
.render("水平組合圖_test.html")
)
我們可以看到兩張圖表被以上下組合的方式拼接起來(lái),當(dāng)然除了上下的拼接以外,我們還可以左右來(lái)拼接,代碼如下
bar = (
Bar()
.add_xaxis(Faker.choose())
.add_yaxis("商家1", Faker.values())
.add_yaxis("商家2", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts(title="直方圖"),legend_opts=opts.LegendOpts(pos_left="20%"),)
)
line = (
Line()
.add_xaxis(Faker.choose())
.add_yaxis("商家1", Faker.values())
.add_yaxis("商家2", Faker.values())
.set_global_opts(
title_opts=opts.TitleOpts(title="折線圖", pos_right="5%"),
legend_opts=opts.LegendOpts(pos_right="20%"),
)
)
grid = (
Grid()
.add(bar, grid_opts=opts.GridOpts(pos_left="60%"))
.add(line, grid_opts=opts.GridOpts(pos_right="50%"))
.render("垂直組合圖_test.html")
)
可以看到我們無(wú)論是想上下拼接還是左右拼接,都可以通過(guò)調(diào)整參數(shù)“pos_left”、“pos_right”、“pos_top”以及“pos_bottom”這幾個(gè)參數(shù)來(lái)實(shí)現(xiàn),我們?cè)賮?lái)看一下下面這個(gè)例子,我們也可以將地圖和直方圖兩者拼接起來(lái)
bar = (
Bar()
.add_xaxis(Faker.choose())
.add_yaxis("商家1", Faker.values())
.add_yaxis("商家2", Faker.values())
.set_global_opts(legend_opts=opts.LegendOpts(pos_left="20%"))
) map = (
Map()
.add("商家1", [list(z) for z in zip(Faker.provinces, Faker.values())], "china")
.set_global_opts(title_opts=opts.TitleOpts(title="地圖-基本示例"))
)
grid = (
Grid()
.add(bar, grid_opts=opts.GridOpts(pos_top="50%", pos_right="75%"))
.add(map, grid_opts=opts.GridOpts(pos_left="60%"))
.render("地圖+直方圖.html")
)
英文單詞“overlap”的意思是重疊,那么放在這里,也就指的是可以將多張圖合并成一張,那么該怎么結(jié)合才好呢?我們來(lái)看一下下面這個(gè)例子,我們將直方圖和折線圖通過(guò)overlap組件組合到一起
v1 = Faker.values()
v2 = Faker.values()
v3 = Faker.values()
bar = (
Bar()
.add_xaxis(Faker.provinces)
.add_yaxis("商家A", v1)
.add_yaxis("商家B", v2)
.extend_axis(
yaxis=opts.AxisOpts(
axislabel_opts=opts.LabelOpts(formatter="{value} 個(gè)"), interval=20
)
)
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(
title_opts=opts.TitleOpts(title="Overlap-bar+line"),
yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(formatter="{value} 個(gè)")),
)
)
line = Line().add_xaxis(Faker.provinces).add_yaxis("商家C", v3, yaxis_index=1)
bar.overlap(line)
bar.render("直方圖+折線圖Overlap.html")
除此之外,我們也可以將散點(diǎn)圖和折線圖合并在一張圖上面,在代碼上就只要將直方圖的代碼替換成散點(diǎn)圖的就行,這邊也就具體不做演示
我們也可以將上面提高的兩個(gè)組件結(jié)合起來(lái)使用,以此來(lái)繪制多條Y軸的直方圖圖表,代碼如下
Bar()
.add_xaxis(x_data)
.add_yaxis( "A",
[具體相關(guān)的數(shù)據(jù)],
yaxis_index=0,
color="#d14a61",
)
.add_yaxis( "B",
[具體相關(guān)的數(shù)據(jù)],
yaxis_index=1,
color="#5793f3",
)
.直方圖的全局配置代碼....
line = (
Line()
.add_xaxis(x_data)
.add_yaxis( "C",
[具體相關(guān)的數(shù)據(jù)],
yaxis_index=2,
color="#675bba",
label_opts=opts.LabelOpts(is_show=False),
)
)
bar.overlap(line)
grid = Grid()
grid.add(bar, opts.GridOpts(pos_left="5%", pos_right="20%"), is_control_axis_index=True)
grid.render("test.html")
我們?cè)谟肞yecharts繪制了多張圖表之后,可以直接Tab組件將多張圖表連起來(lái),一頁(yè)放一張圖表,具體看下面的例子和代碼,
def bar_datazoom_slider() -> Bar: c = (
Bar()
.add_xaxis(Faker.days_attrs)
.add_yaxis("商家A", Faker.days_values)
.set_global_opts(
title_opts=opts.TitleOpts(title="Bar-DataZoom(slider-水平)"),
datazoom_opts=[opts.DataZoomOpts()],
)
) return c def line_markpoint() -> Line: c = (
Line()
.add_xaxis(Faker.choose())
.add_yaxis( "商家A",
Faker.values(),
markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="min")]),
)
.set_global_opts(title_opts=opts.TitleOpts(title="折線圖"))
) return c def pie_rosetype() -> Pie: v = Faker.choose()
c = (
Pie()
.add( "",
[list(z) for z in zip(v, Faker.values())],
radius=["30%", "75%"],
center=["25%", "50%"],
rosetype="radius",
label_opts=opts.LabelOpts(is_show=False),
)
.set_global_opts(title_opts=opts.TitleOpts(title="餅圖-玫瑰圖示例"))
) return c
tab = Tab()
tab.add(bar_datazoom_slider(), "直方圖")
tab.add(line_markpoint(), "折線圖")
tab.add(pie_rosetype(), "餅圖")
tab.render("tab_base.html")
分別將所繪制的三張圖表放置在三個(gè)頁(yè)面當(dāng)中,通過(guò)pyecharts庫(kù)當(dāng)中的tab串聯(lián)起來(lái)
和上面Tab組件不一樣的是,Tab組件是一頁(yè)放一張圖表,有幾張圖表就分成幾頁(yè),而Page組件則是將繪制完成的多張圖表統(tǒng)統(tǒng)放在一張頁(yè)面里面,代碼的改動(dòng)上面也十分的簡(jiǎn)單,只要將上面代碼的Tab部分改成Page()即可,如下
def bar_datazoom_slider() -> Bar: c = (
Bar()
.add_xaxis(Faker.days_attrs)
.add_yaxis("商家A", Faker.days_values)
.set_global_opts(
title_opts=opts.TitleOpts(title="Bar-DataZoom(slider-水平)"),
datazoom_opts=[opts.DataZoomOpts()],
)
) return c def line_markpoint() -> Line: c = (
Line()
.add_xaxis(Faker.choose())
.add_yaxis( "商家A",
Faker.values(),
markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="min")]),
)
.set_global_opts(title_opts=opts.TitleOpts(title="折線圖"))
) return c def pie_rosetype() -> Pie: v = Faker.choose()
c = (
Pie()
.add( "",
[list(z) for z in zip(v, Faker.values())],
radius=["30%", "75%"],
center=["25%", "50%"],
rosetype="radius",
label_opts=opts.LabelOpts(is_show=False),
)
.set_global_opts(title_opts=opts.TitleOpts(title="餅圖-玫瑰圖示例"))
) return c
page = Page(layout=Page.SimplePageLayout)
page.add(
bar_datazoom_slider(),
line_markpoint(),
pie_rosetype(),
)
page.render("page_simple_layout.html")
上圖所示的圖表在頁(yè)面當(dāng)中是不能被挪動(dòng)的,在Page()組件當(dāng)中我們還能夠使得圖表按照我們所想的那樣隨意的挪動(dòng)
## 上面的代碼都一樣, page = Page(layout=Page.DraggablePageLayout)
page.add(
bar_datazoom_slider(),
line_markpoint(),
pie_rosetype(),
)
page.render("page_draggable_layout.html")
本篇文章所用到的繪制的圖表都比較的簡(jiǎn)單,為了可以讓讀者更加容易輕松的上手來(lái)實(shí)踐,本質(zhì)上就是通過(guò)上面提到的幾大組件將繪制好的圖表給串聯(lián)起來(lái)。
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
LSTM 模型輸入長(zhǎng)度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長(zhǎng)序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報(bào)考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代浪潮下,CDA 數(shù)據(jù)分析師認(rèn)證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計(jì)的實(shí)用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強(qiáng)大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠(chéng)摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實(shí)施重大更新。 此次更新旨在確保認(rèn) ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價(jià)值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡(jiǎn)稱 BI)深度融合的時(shí)代,BI ...
2025-07-10SQL 在預(yù)測(cè)分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢(shì)預(yù)判? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代,預(yù)測(cè)分析作為挖掘數(shù)據(jù)潛在價(jià)值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價(jià)值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點(diǎn),而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報(bào)考到取證的全攻略? 在數(shù)字經(jīng)濟(jì)蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭(zhēng)搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢(shì)性檢驗(yàn):捕捉數(shù)據(jù)背后的時(shí)間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢(shì)性檢驗(yàn)如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時(shí)間維度的精準(zhǔn)切片? ? 在數(shù)據(jù)的世界里,時(shí)間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準(zhǔn) ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實(shí)戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認(rèn)證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗(yàn):數(shù)據(jù)趨勢(shì)與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準(zhǔn)確捕捉數(shù)據(jù)的趨勢(shì)變化以及識(shí)別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認(rèn)證作為國(guó)內(nèi)權(quán)威的數(shù)據(jù)分析能力認(rèn)證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對(duì)策略? 長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨(dú)特的門控機(jī)制,在 ...
2025-07-07統(tǒng)計(jì)學(xué)方法在市場(chǎng)調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場(chǎng)調(diào)研是企業(yè)洞察市場(chǎng)動(dòng)態(tài)、了解消費(fèi)者需求的重要途徑,而統(tǒng)計(jì)學(xué)方法則是市場(chǎng)調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當(dāng)下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動(dòng)力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準(zhǔn)確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動(dòng)力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價(jià)值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03