
1.主成分分析的具體方法
主成分分析是一類常用的針對連續(xù)變量的降維方法,選取能夠最大化解釋數據變異的成分,將數據從高維降到低維,同時 保證各個維度之間正交。 對變量的協方差矩陣或相關系數矩陣求取特征值和特征向量,經證明,對應最大特征值的特征向量,其方向正是協方差矩 陣變異最大的方向。依次類推,第二大特征值對應的特征向量,是與第一個特征向量正交且能最大程度解釋數據剩余變異 的方向,而每個特征值則能夠衡量各方向上變異的程度。因此,進行主成分分析時,選取最大的幾個特征值對應的特征向 量,并將數據映射在這幾個特征向量組成的參考系中,達到降維的目的(選擇的特征向量數量低于原始數據的維數)。
1.主成分分析算法解析
主成分分析算法認為,數據的信息是包含在其方差當中的,如果一個隨機變量的方差很小,說明其不確定性較低,或者說即便我們沒有獲 得這個變量的抽樣值,也幾乎可以用一個確定的值(例如其期望值)來代替它,因此引入它只能消除很少的不確定性,即該變量包含的信 息較少。相反,一個方差很大的變量,如果能夠獲得它的抽樣值,則可以幫助我們消除很大一部分不確定性,因此它包含的信息較多。 從主成分分析的觀點出發(fā),我們就知道下圖中投影到哪個軸更加合適了,顯然將原始坐標軸旋轉到左圖當中的U1位置更好,因為數據在 這個方向上的變異(方差)更大,而樣本在右圖的U1方向顯然變異更?。▓D中陰影用于示意離散程度,并不代表方差大小)。
我們的目標是優(yōu)化上式,求滿足該函數最大化的 u,可以使用拉格朗日乘數法,即求滿足下式最大的 u:
我們的目標是優(yōu)化上式,求滿足該函數最大化的 u,可以使用拉格朗日乘數法,即求滿足下式最大的 u:
在實際研究中,有時單個指標的方差對研究目的起關鍵作用,為了達到研究目的,此時用協方差矩陣進行主成分分析恰 到好處。相關系數矩陣就是隨機變量標準化后的協方差矩陣。通過隨機變量的標準化,相關系數矩陣剝離了單個指標的 方差,僅保留指標間的相關性,用相關系數矩陣計算主成分,其優(yōu)勢效應僅體現在相關性大、相關指標數多的一類指標上。
2.主成分法的應用
大致分為三個方面:
(1)對數據做綜合打分
(2)降維以便對數據進行描述
(3)為聚類或回歸等分析提供變量壓縮 在應用時要能夠判斷主成分法的適用性,能夠根據需求選取合適的主成分數量。
1.主成分分析計算在選擇相關系數計算法時,確定主成分個數的大致原則包括( )?
A.特征根值大于1
B. 特征根值大于0.5
答案:AC 解析:主成分分析主要考核得到軟件的計算結果后如何選擇主成分個數,由于主成分一般不具有 明確的意義,因此不考核主成分的解釋,這會放在因子分析考核。該題是一個很標準的題目,答 案可以從任何一本教科書上找到。請注意題干中的“大致原則”,說明該原則在不同的運用場合 下選擇標準會略有改變
2.主成分分析計算分為根據相關系數和協方差矩陣兩種方式,以下哪種情況適合用相關系數計算( )?
A.變量的量綱不同
B. 變量的方差不同
C. 變量的標準差不同
D. 變量的均值不同
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
LSTM 模型輸入長度選擇技巧:提升序列建模效能的關鍵? 在循環(huán)神經網絡(RNN)家族中,長短期記憶網絡(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數據分析師報考條件詳解與準備指南? ? 在數據驅動決策的時代浪潮下,CDA 數據分析師認證愈發(fā)受到矚目,成為眾多有志投身數 ...
2025-07-11數據透視表中兩列相乘合計的實用指南? 在數據分析的日常工作中,數據透視表憑借其強大的數據匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實施重大更新。 此次更新旨在確保認 ...
2025-07-10BI 大數據分析師:連接數據與業(yè)務的價值轉化者? ? 在大數據與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時代,BI ...
2025-07-10SQL 在預測分析中的應用:從數據查詢到趨勢預判? ? 在數據驅動決策的時代,預測分析作為挖掘數據潛在價值的核心手段,正被廣泛 ...
2025-07-10數據查詢結束后:分析師的收尾工作與價值深化? ? 在數據分析的全流程中,“query end”(查詢結束)并非工作的終點,而是將數 ...
2025-07-10CDA 數據分析師考試:從報考到取證的全攻略? 在數字經濟蓬勃發(fā)展的今天,數據分析師已成為各行業(yè)爭搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢性檢驗:捕捉數據背后的時間軌跡? 在數據分析的版圖中,單樣本趨勢性檢驗如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數據類型:時間維度的精準切片? ? 在數據的世界里,時間是最不可或缺的維度之一,而year_month數據類型就像一把精準 ...
2025-07-09CDA 備考干貨:Python 在數據分析中的核心應用與實戰(zhàn)技巧? ? 在 CDA 數據分析師認證考試中,Python 作為數據處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗:數據趨勢與突變分析的有力工具? ? ? 在數據分析的廣袤領域中,準確捕捉數據的趨勢變化以及識別 ...
2025-07-08備戰(zhàn) CDA 數據分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數據分析師認證作為國內權威的數據分析能力認證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應對策略? 長短期記憶網絡(LSTM)作為循環(huán)神經網絡(RNN)的一種變體,憑借獨特的門控機制,在 ...
2025-07-07統計學方法在市場調研數據中的深度應用? 市場調研是企業(yè)洞察市場動態(tài)、了解消費者需求的重要途徑,而統計學方法則是市場調研數 ...
2025-07-07CDA數據分析師證書考試全攻略? 在數字化浪潮席卷全球的當下,數據已成為企業(yè)決策、行業(yè)發(fā)展的核心驅動力,數據分析師也因此成為 ...
2025-07-07剖析 CDA 數據分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數據分析師考試作為衡量數據專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉日期:解鎖數據處理的關鍵技能? 在數據處理與分析工作中,數據格式的規(guī)范性是保證后續(xù)分析準確性的基礎 ...
2025-07-04CDA 數據分析師視角:從數據迷霧中探尋商業(yè)真相? 在數字化浪潮席卷全球的今天,數據已成為企業(yè)決策的核心驅動力,CDA(Certifie ...
2025-07-04CDA 數據分析師:開啟數據職業(yè)發(fā)展新征程? ? 在數據成為核心生產要素的今天,數據分析師的職業(yè)價值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03