
從零開(kāi)始數(shù)據(jù)分析:一個(gè)數(shù)據(jù)分析師的數(shù)據(jù)分析流程
數(shù)據(jù)分析百科給出準(zhǔn)確定義:指用適當(dāng)?shù)?a href='/map/tongjifenxi/' style='color:#000;font-size:inherit;'>統(tǒng)計(jì)分析方法對(duì)收集來(lái)的大量數(shù)據(jù)進(jìn)行分析,提取有用信息和形成結(jié)論而對(duì)數(shù)據(jù)加以詳細(xì)研究和概括總結(jié)的過(guò)程。
簡(jiǎn)而言之就是有目的的收集數(shù)據(jù)、分析數(shù)據(jù),使之成為信息的過(guò)程。
數(shù)據(jù)分析過(guò)程1、探索性數(shù)據(jù)分析
初步獲取的數(shù)據(jù)是雜亂無(wú)章的,通過(guò)圖表形式對(duì)數(shù)據(jù)進(jìn)行整合,找尋數(shù)據(jù)之間存在的關(guān)系。
2、模型選定分析
通過(guò)探索性數(shù)據(jù)分析,歸納出一類甚至是多類數(shù)據(jù)模型,通過(guò)對(duì)模型再次整合,進(jìn)一步分析出一定的模型。
3、推斷分析
通常使用數(shù)理統(tǒng)計(jì)方法對(duì)所定模型或估計(jì)的可靠程度和精確程度作出推斷。
數(shù)據(jù)分析流程
完整數(shù)據(jù)分析流程圖
1. 識(shí)別信息需求
識(shí)別信息需求是確保數(shù)據(jù)分析過(guò)程有效性的首要條件,可以為收集數(shù)據(jù)、分析數(shù)據(jù)提供清晰的目標(biāo)。
2.數(shù)據(jù)采集
了解數(shù)據(jù)采集的意義在于真正了解數(shù)據(jù)的原始面貌,包括數(shù)據(jù)產(chǎn)生的時(shí)間、條件、格式、內(nèi)容、長(zhǎng)度、限制條件等。幫助數(shù)據(jù)分析師更有針對(duì)性的控制數(shù)據(jù)生產(chǎn)和采集過(guò)程,避免由于違反數(shù)據(jù)采集規(guī)則導(dǎo)致的數(shù)據(jù)問(wèn)題;同時(shí)對(duì)數(shù)據(jù)采集邏輯的認(rèn)識(shí)增加了數(shù)據(jù)分析師對(duì)數(shù)據(jù)的理解程度,尤其是數(shù)據(jù)中的異常變化。
在數(shù)據(jù)采集階段,數(shù)據(jù)分析師需要更多的了解數(shù)據(jù)生產(chǎn)和采集過(guò)程中的異常情況,能很大程度上避免“垃圾數(shù)據(jù)進(jìn)導(dǎo)致垃圾數(shù)據(jù)出”的問(wèn)題。
2.數(shù)據(jù)存儲(chǔ)
在數(shù)據(jù)存儲(chǔ)階段,數(shù)據(jù)分析師需要了解數(shù)據(jù)存儲(chǔ)內(nèi)部的工作機(jī)制和流程,最核心的因素是在原始數(shù)據(jù)基礎(chǔ)上經(jīng)過(guò)哪些加工處理,最后得到了怎樣的數(shù)據(jù)。由于數(shù)據(jù)在存儲(chǔ)階段是不斷動(dòng)態(tài)變化和迭代更新的,其及時(shí)性、完整性、有效性、一致性、準(zhǔn)確性很多時(shí)候由于軟硬件、內(nèi)外部環(huán)境問(wèn)題無(wú)法保證,這些都會(huì)導(dǎo)致后期數(shù)據(jù)應(yīng)用問(wèn)題。
3.數(shù)據(jù)提取
數(shù)據(jù)提取是將數(shù)據(jù)取出的過(guò)程,數(shù)據(jù)提取的核心環(huán)節(jié)是從哪取、何時(shí)取、如何取。
在數(shù)據(jù)提取階段,數(shù)據(jù)分析師首先需要具備數(shù)據(jù)提取能力。常用的Select From語(yǔ)句是SQL查詢和提取的必備技能,但即使是簡(jiǎn)單的取數(shù)工作也有不同層次。
第一層是從單張數(shù)據(jù)庫(kù)中按條件提取數(shù)據(jù)的能力,where是基本的條件語(yǔ)句;
第二層是掌握跨庫(kù)表提取數(shù)據(jù)的能力,不同的join有不同的用法;
第三層是優(yōu)化SQL語(yǔ)句,通過(guò)優(yōu)化嵌套、篩選的邏輯層次和遍歷次數(shù)等,減少個(gè)人時(shí)間浪費(fèi)和系統(tǒng)資源消耗。
數(shù)據(jù)挖掘是面對(duì)海量數(shù)據(jù)時(shí)進(jìn)行數(shù)據(jù)價(jià)值提煉的關(guān)鍵,以下是算法選擇的基本原則:
沒(méi)有最好的算法,只有最適合的算法,算法選擇的原則是兼具準(zhǔn)確性、可操作性、可理解性、可應(yīng)用性。
沒(méi)有一種算法能解決所有問(wèn)題,但精通一門算法可以解決很多問(wèn)題。
挖掘算法最難的是算法調(diào)優(yōu),同一種算法在不同場(chǎng)景下的參數(shù)設(shè)定相同,實(shí)踐是獲得調(diào)優(yōu)經(jīng)驗(yàn)的重要途徑。
在數(shù)據(jù)挖掘階段,數(shù)據(jù)分析師要掌握數(shù)據(jù)挖掘相關(guān)能力:一是數(shù)據(jù)挖掘、統(tǒng)計(jì)學(xué)、數(shù)學(xué)基本原理和常識(shí);二是熟練使用一門數(shù)據(jù)挖掘工具,Clementine、SAS或R都是可選項(xiàng),如果是程序出身也可以選擇編程實(shí)現(xiàn);三是需要了解常用的數(shù)據(jù)挖掘算法以及每種算法的應(yīng)用場(chǎng)景和優(yōu)劣差異點(diǎn)。
5.數(shù)據(jù)分析
分析數(shù)據(jù)是將收集的數(shù)據(jù)通過(guò)加工、整理和分析、使其轉(zhuǎn)化為信息,通常所用的方法有:
老七種工具,即排列圖、因果圖、分層法、調(diào)查表、散步圖、直方圖、控制圖;
新七種工具,即關(guān)聯(lián)圖、系統(tǒng)圖、矩陣圖、KJ法、計(jì)劃評(píng)審技術(shù)、PDPC法、矩陣數(shù)據(jù)圖;
數(shù)據(jù)分析相對(duì)于數(shù)據(jù)挖掘更多的是偏向業(yè)務(wù)應(yīng)用和解讀,當(dāng)數(shù)據(jù)挖掘算法得出結(jié)論后,如何解釋算法在結(jié)果、可信度、顯著程度等方面對(duì)于業(yè)務(wù)的實(shí)際意義,如何將挖掘結(jié)果反饋到業(yè)務(wù)操作過(guò)程中便于業(yè)務(wù)理解和實(shí)施是關(guān)鍵。
數(shù)據(jù)分析界有一句經(jīng)典名言,字不如表,表不如圖。別說(shuō)平常人,數(shù)據(jù)分析師自己看數(shù)據(jù)也頭大。這時(shí)就得靠數(shù)據(jù)可視化的神奇魔力了。除掉數(shù)據(jù)挖掘這類高級(jí)分析,不少數(shù)據(jù)分析師的平常工作之一就是監(jiān)控?cái)?shù)據(jù)觀察數(shù)據(jù)。
7.數(shù)據(jù)應(yīng)用
數(shù)據(jù)應(yīng)用是數(shù)據(jù)具有落地價(jià)值的直接體現(xiàn),這個(gè)過(guò)程需要數(shù)據(jù)分析師具備數(shù)據(jù)溝通能力、業(yè)務(wù)推動(dòng)能力和項(xiàng)目工作能力。
數(shù)據(jù)溝通能力。深入淺出的數(shù)據(jù)報(bào)告、言簡(jiǎn)意賅的數(shù)據(jù)結(jié)論更利于業(yè)務(wù)理解和接受。
業(yè)務(wù)推動(dòng)能力。在業(yè)務(wù)理解數(shù)據(jù)的基礎(chǔ)上,推動(dòng)業(yè)務(wù)落地實(shí)現(xiàn)數(shù)據(jù)建議。
項(xiàng)目工作能力。數(shù)據(jù)項(xiàng)目工作是循序漸進(jìn)的過(guò)程,無(wú)論是一個(gè)數(shù)據(jù)分析項(xiàng)目還是數(shù)據(jù)產(chǎn)品項(xiàng)目,都需要數(shù)據(jù)分析師具備計(jì)劃、領(lǐng)導(dǎo)、組織、控制的項(xiàng)目工作能力。
附:數(shù)據(jù)分析常用方法
1、描述性統(tǒng)計(jì)分析
包括樣本基本資料的描述,作各變量的次數(shù)分配及百分比分析,以了解樣本的分布情況。
此外,以平均數(shù)和標(biāo)準(zhǔn)差來(lái)描述市場(chǎng)導(dǎo)向、競(jìng)爭(zhēng)優(yōu)勢(shì)、組織績(jī)效等各個(gè)構(gòu)面,以了解樣本企業(yè)的管理人員對(duì)這些相關(guān)變量的感知,并利用t檢驗(yàn)及相關(guān)分析對(duì)背景變量所造成的影響做檢驗(yàn)。
2、Cronbach’a信度系數(shù)分析
信度是指測(cè)驗(yàn)結(jié)果的一致性、穩(wěn)定性及可靠性,一般多以內(nèi)部一致性(consistency)來(lái)加以表示該測(cè)驗(yàn)信度的高低,信度系數(shù)愈高即表示該測(cè)驗(yàn)的結(jié)果愈一致、穩(wěn)定與可靠。
針對(duì)各研究變量的衡量題項(xiàng)進(jìn)行Cronbach’a信度分析,以了解衡量構(gòu)面的內(nèi)部一致性。一般來(lái)說(shuō),Cronbach’a僅大于0.7為高信度,低于0.35為低信度(Cuieford,1965),0.5為最低可以接受的信度水準(zhǔn)(Nunnally,1978)。
3、探索性因素分析(exploratory factor analysis)和驗(yàn)證性因素分析(confirmatory factor analysis)
用以測(cè)試各構(gòu)面衡量題項(xiàng)的聚合效度(convergent validity)與區(qū)別效度(discriminant validity),因?yàn)閮H有信度是不夠的,可信度高的測(cè)量,可能是完全無(wú)效或是某些程度上無(wú)效,所以我們必須對(duì)效度進(jìn)行檢驗(yàn)。
效度是指工具是否能測(cè)出在設(shè)計(jì)時(shí)想測(cè)出的結(jié)果,收斂效度的檢驗(yàn)根據(jù)各個(gè)項(xiàng)目和所衡量的概念的因素的負(fù)荷量來(lái)決定,而區(qū)別效度的檢驗(yàn)是根據(jù)檢驗(yàn)性因素分析計(jì)算理論上相關(guān)概念的相關(guān)系數(shù),檢定相關(guān)系數(shù)的95%信賴區(qū)間是否包含1.0,若不包含1.0,則可確認(rèn)為具有區(qū)別效度(Anderson,1987)。
4、結(jié)構(gòu)方程模型分析(structural equations modeling)
由于結(jié)構(gòu)方程模型結(jié)合了因素分析(factor analysis)和路徑分析(path analysis),并納入計(jì)量經(jīng)濟(jì)學(xué)的聯(lián)立方程式,可同時(shí)處理多個(gè)因變量,容許自變量和因變量含測(cè)量誤差,可同時(shí)估計(jì)因子結(jié)構(gòu)和因子關(guān)系,容許更大彈性的測(cè)量模型,可估計(jì)整個(gè)模型的擬合程度(Bollen和Long,1993),因而適用于整體模型的因果關(guān)系。
在模型參數(shù)的估計(jì)上,采用最大似然估計(jì)法(Maximum Likelihood,ML);在模型的適合度檢驗(yàn)上,以基本的擬合標(biāo)準(zhǔn)(preliminary fit criteria)、整體模型擬合優(yōu)度(overall model fit)以及模型內(nèi)在結(jié)構(gòu)擬合優(yōu)度(fit of internal structure of model)(Bagozzi和Yi,1988)三個(gè)方面的各項(xiàng)指標(biāo)作為判定的標(biāo)準(zhǔn)。
在評(píng)價(jià)整體模式適配標(biāo)準(zhǔn)方面,本研究采用x2(卡方)/df(自由度)值、擬合優(yōu)度指數(shù)(goodness.of.f:iJt.in.dex,GFI)、平均殘差平方根(root—mean.square:residual,RMSR)、近似誤差均方根(root-mean—square-error-of-approximation,RMSEA)等指標(biāo);模型內(nèi)在結(jié)構(gòu)擬合優(yōu)度則參考Bagozzi和Yi(1988)的標(biāo)準(zhǔn),考察所估計(jì)的參數(shù)是否都到達(dá)顯著水平。
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
LSTM 模型輸入長(zhǎng)度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長(zhǎng)序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報(bào)考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代浪潮下,CDA 數(shù)據(jù)分析師認(rèn)證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計(jì)的實(shí)用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強(qiáng)大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠(chéng)摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實(shí)施重大更新。 此次更新旨在確保認(rèn) ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價(jià)值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡(jiǎn)稱 BI)深度融合的時(shí)代,BI ...
2025-07-10SQL 在預(yù)測(cè)分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢(shì)預(yù)判? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代,預(yù)測(cè)分析作為挖掘數(shù)據(jù)潛在價(jià)值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價(jià)值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點(diǎn),而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報(bào)考到取證的全攻略? 在數(shù)字經(jīng)濟(jì)蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭(zhēng)搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢(shì)性檢驗(yàn):捕捉數(shù)據(jù)背后的時(shí)間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢(shì)性檢驗(yàn)如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時(shí)間維度的精準(zhǔn)切片? ? 在數(shù)據(jù)的世界里,時(shí)間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準(zhǔn) ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實(shí)戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認(rèn)證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗(yàn):數(shù)據(jù)趨勢(shì)與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準(zhǔn)確捕捉數(shù)據(jù)的趨勢(shì)變化以及識(shí)別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認(rèn)證作為國(guó)內(nèi)權(quán)威的數(shù)據(jù)分析能力認(rèn)證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對(duì)策略? 長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨(dú)特的門控機(jī)制,在 ...
2025-07-07統(tǒng)計(jì)學(xué)方法在市場(chǎng)調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場(chǎng)調(diào)研是企業(yè)洞察市場(chǎng)動(dòng)態(tài)、了解消費(fèi)者需求的重要途徑,而統(tǒng)計(jì)學(xué)方法則是市場(chǎng)調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書(shū)考試全攻略? 在數(shù)字化浪潮席卷全球的當(dāng)下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動(dòng)力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準(zhǔn)確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動(dòng)力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開(kāi)啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價(jià)值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03