
需要通過(guò)Java程序提交Yarn的MapReduce的計(jì)算任務(wù)。與一般的通過(guò)Jar包提交MapReduce任務(wù)不同,通過(guò)程序提交MapReduce任務(wù)需要有點(diǎn)小變動(dòng),詳見(jiàn)以下代碼。
以下為MapReduce主程序,有幾點(diǎn)需要提一下:
1、在程序中,我將文件讀入格式設(shè)定為WholeFileInputFormat,即不對(duì)文件進(jìn)行切分。
2、為了控制reduce的處理過(guò)程,map的輸出鍵的格式為組合鍵格式。與常規(guī)的<key,value>不同,這里變?yōu)榱?lt;textpair,value>,TextPair的格式為<key1,key2>。
3、為了適應(yīng)組合鍵,重新設(shè)定了分組函數(shù),即GroupComparator。分組規(guī)則為,只要TextPair中的key1相同(不要求key2相同),則數(shù)據(jù)被分配到一個(gè)reduce容器中。這樣,當(dāng)相同key1的數(shù)據(jù)進(jìn)入reduce容器后,key2起到了一個(gè)數(shù)據(jù)標(biāo)識(shí)的作用。
package web.Hadoop;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.JobStatus;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.NullOutputFormat;
import util.Utils;
public class GEMIMain {
public GEMIMain(){
job = null;
}
public Job job;
public static class NamePartitioner extends
Partitioner<textpair, byteswritable=""> {
@Override
public int getPartition(TextPair key, BytesWritable value,
int numPartitions) {
return Math.abs(key.getFirst().hashCode() * 127) % numPartitions;
}
}
/**
* 分組設(shè)置類(lèi),只要兩個(gè)TextPair的第一個(gè)key相同,他們就屬于同一組。他們的Value就放到一個(gè)Value迭代器中,
* 然后進(jìn)入Reducer的reduce方法中。
*
* @author hduser
*
*/
public static class GroupComparator extends WritableComparator {
public GroupComparator() {
super(TextPair.class, true);
}
@Override
public int compare(WritableComparable a, WritableComparable b) {
TextPair t1 = (TextPair) a;
TextPair t2 = (TextPair) b;
// 比較相同則返回0,比較不同則返回-1
return t1.getFirst().compareTo(t2.getFirst()); // 只要是第一個(gè)字段相同的就分成為同一組
}
}
public boolean runJob(String[] args) throws IOException,
ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
// 在conf中設(shè)置outputath變量,以在reduce函數(shù)中可以獲取到該參數(shù)的值
conf.set("outputPath", args[args.length - 1].toString());
//設(shè)置HDFS中,每次任務(wù)生成產(chǎn)品的質(zhì)量文件所在文件夾。args數(shù)組的倒數(shù)第二個(gè)原數(shù)為質(zhì)量文件所在文件夾
conf.set("qualityFolder", args[args.length - 2].toString());
//如果在Server中運(yùn)行,則需要獲取web項(xiàng)目的根路徑;如果以java應(yīng)用方式調(diào)試,則讀取/opt/hadoop-2.5.0/etc/hadoop/目錄下的配置文件
//MapReduceProgress mprogress = new MapReduceProgress();
//String rootPath= mprogress.rootPath;
String rootPath="/opt/hadoop-2.5.0/etc/hadoop/";
conf.addResource(new Path(rootPath+"yarn-site.xml"));
conf.addResource(new Path(rootPath+"core-site.xml"));
conf.addResource(new Path(rootPath+"hdfs-site.xml"));
conf.addResource(new Path(rootPath+"mapred-site.xml"));
this.job = new Job(conf);
job.setJobName("Job name:" + args[0]);
job.setJarByClass(GEMIMain.class);
job.setMapperClass(GEMIMapper.class);
job.setMapOutputKeyClass(TextPair.class);
job.setMapOutputValueClass(BytesWritable.class);
// 設(shè)置partition
job.setPartitionerClass(NamePartitioner.class);
// 在分區(qū)之后按照指定的條件分組
job.setGroupingComparatorClass(GroupComparator.class);
job.setReducerClass(GEMIReducer.class);
job.setInputFormatClass(WholeFileInputFormat.class);
job.setOutputFormatClass(NullOutputFormat.class);
// job.setOutputKeyClass(NullWritable.class);
// job.setOutputValueClass(Text.class);
job.setNumReduceTasks(8);
// 設(shè)置計(jì)算輸入數(shù)據(jù)的路徑
for (int i = 1; i < args.length - 2; i++) {
FileInputFormat.addInputPath(job, new Path(args[i]));
}
// args數(shù)組的最后一個(gè)元素為輸出路徑
FileOutputFormat.setOutputPath(job, new Path(args[args.length - 1]));
boolean flag = job.waitForCompletion(true);
return flag;
}
@SuppressWarnings("static-access")
public static void main(String[] args) throws ClassNotFoundException,
IOException, InterruptedException {
String[] inputPaths = new String[] { "normalizeJob",
"hdfs://192.168.168.101:9000/user/hduser/red1/",
"hdfs://192.168.168.101:9000/user/hduser/nir1/","quality11111",
"hdfs://192.168.168.101:9000/user/hduser/test" };
GEMIMain test = new GEMIMain();
boolean result = test.runJob(inputPaths);
}
}
以下為T(mén)extPair類(lèi)
public class TextPair implements WritableComparable {
private Text first;
private Text second;
public TextPair() {
set(new Text(), new Text());
}
public TextPair(String first, String second) {
set(new Text(first), new Text(second));
}
public TextPair(Text first, Text second) {
set(first, second);
}
public void set(Text first, Text second) {
this.first = first;
this.second = second;
}
public Text getFirst() {
return first;
}
public Text getSecond() {
return second;
}
@Override
public void write(DataOutput out) throws IOException {
first.write(out);
second.write(out);
}
@Override
public void readFields(DataInput in) throws IOException {
first.readFields(in);
second.readFields(in);
}
@Override
public int hashCode() {
return first.hashCode() * 163 + second.hashCode();
}
@Override
public boolean equals(Object o) {
if (o instanceof TextPair) {
TextPair tp = (TextPair) o;
return first.equals(tp.first) && second.equals(tp.second);
}
return false;
}
@Override
public String toString() {
return first + "\t" + second;
}
@Override
/**A.compareTo(B)
* 如果比較相同,則比較結(jié)果為0
* 如果A大于B,則比較結(jié)果為1
* 如果A小于B,則比較結(jié)果為-1
*
*/
public int compareTo(TextPair tp) {
int cmp = first.compareTo(tp.first);
if (cmp != 0) {
return cmp;
}
//此時(shí)實(shí)現(xiàn)的是升序排列
return second.compareTo(tp.second);
}
}
以下為WholeFileInputFormat,其控制數(shù)據(jù)在mapreduce過(guò)程中不被切分
package web.hadoop;
import java.io.IOException;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.JobContext;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
public class WholeFileInputFormat extends FileInputFormat<text, byteswritable=""> {
@Override
public RecordReader<text, byteswritable=""> createRecordReader(
InputSplit arg0, TaskAttemptContext arg1) throws IOException,
InterruptedException {
// TODO Auto-generated method stub
return new WholeFileRecordReader();
}
@Override
protected boolean isSplitable(JobContext context, Path filename) {
// TODO Auto-generated method stub
return false;
}
}
以下為WholeFileRecordReader類(lèi)
package web.hadoop;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
public class WholeFileRecordReader extends RecordReader<text, byteswritable=""> {
private FileSplit fileSplit;
private FSDataInputStream fis;
private Text key = null;
private BytesWritable value = null;
private boolean processed = false;
@Override
public void close() throws IOException {
// TODO Auto-generated method stub
// fis.close();
}
@Override
public Text getCurrentKey() throws IOException, InterruptedException {
// TODO Auto-generated method stub
return this.key;
}
@Override
public BytesWritable getCurrentValue() throws IOException,
InterruptedException {
// TODO Auto-generated method stub
return this.value;
}
@Override
public void initialize(InputSplit inputSplit, TaskAttemptContext tacontext)
throws IOException, InterruptedException {
fileSplit = (FileSplit) inputSplit;
Configuration job = tacontext.getConfiguration();
Path file = fileSplit.getPath();
FileSystem fs = file.getFileSystem(job);
fis = fs.open(file);
}
@Override
public boolean nextKeyValue() {
if (key == null) {
key = new Text();
}
if (value == null) {
value = new BytesWritable();
}
if (!processed) {
byte[] content = new byte[(int) fileSplit.getLength()];
Path file = fileSplit.getPath();
System.out.println(file.getName());
key.set(file.getName());
try {
IOUtils.readFully(fis, content, 0, content.length);
// value.set(content, 0, content.length);
value.set(new BytesWritable(content));
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} finally {
IOUtils.closeStream(fis);
}
processed = true;
return true;
}
return false;
}
@Override
public float getProgress() throws IOException, InterruptedException {
// TODO Auto-generated method stub
return processed ? fileSplit.getLength() : 0;
}
}
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無(wú)論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫(kù)管理中,“大表” 始終是性能優(yōu)化繞不開(kāi)的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫(kù)表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開(kāi)始提取前,需先判斷 TIF 文件的類(lèi)型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專(zhuān)業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫(kù)表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫(kù))處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場(chǎng)景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專(zhuān)業(yè)操盤(pán)手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對(duì)象的 text 與 content:區(qū)別、場(chǎng)景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請(qǐng)求開(kāi)發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤(pán)手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫(kù)表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請(qǐng)求工具對(duì)比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請(qǐng)求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問(wèn)題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問(wèn)題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營(yíng)問(wèn)題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過(guò)程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營(yíng)銷(xiāo)案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見(jiàn)頂” 的當(dāng)下,精準(zhǔn)營(yíng)銷(xiāo)成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價(jià)值 在數(shù)據(jù)驅(qū)動(dòng)決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類(lèi)分析:從操作實(shí)踐到業(yè)務(wù)價(jià)值挖掘 在數(shù)據(jù)分析場(chǎng)景中,聚類(lèi)分析作為 “無(wú)監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價(jià)值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡(jiǎn)單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10