
k均值聚類(K-means)_k means聚類算法
在前面的文章中,介紹了三種常見的分類算法。分類作為一種監(jiān)督學(xué)習(xí)方法,要求必須事先明確知道各個類別的信息,并且斷言所有待分類項都有一個類別與之對應(yīng)。但是很多時候上述條件得不到滿足,尤其是在處理海量數(shù)據(jù)的時候,如果通過預(yù)處理使得數(shù)據(jù)滿足分類算法的要求,則代價非常大,這時候可以考慮使用聚類算法。聚類屬于無監(jiān)督學(xué)習(xí),相比于分類,聚類不依賴預(yù)定義的類和類標(biāo)號的訓(xùn)練實例。本文首先介紹聚類的基礎(chǔ)——距離與相異度,然后介紹一種常見的聚類算法——k均值和k中心點聚類,最后會舉一個實例:應(yīng)用聚類方法試圖解決一個在體育界大家頗具爭議的問題——中國男足近幾年在亞洲到底處于幾流水平。
相異度計算
在正式討論聚類前,我們要先弄清楚一個問題:如何定量計算兩個可比較元素間的相異度。用通俗的話說,相異度就是兩個東西差別有多大,例如人類與章魚的相異度明顯大于人類與黑猩猩的相異度,這是能我們直觀感受到的。但是,計算機(jī)沒有這種直觀感受能力,我們必須對相異度在數(shù)學(xué)上進(jìn)行定量定義。
設(shè),其中X,Y是兩個元素項,各自具有n個可度量特征屬性,那么X和Y的相異度定義為:
,其中R為實數(shù)域。也就是說相異度是兩個元素對實數(shù)域的一個映射,所映射的實數(shù)定量表示兩個元素的相異度。
下面介紹不同類型變量相異度計算方法。
標(biāo)量
標(biāo)量也就是無方向意義的數(shù)字,也叫標(biāo)度變量?,F(xiàn)在先考慮元素的所有特征屬性都是標(biāo)量的情況。例如,計算X={2,1,102}和Y={1,3,2}的相異度。一種很自然的想法是用兩者的歐幾里得距離來作為相異度,歐幾里得距離的定義如下:
其意義就是兩個元素在歐氏空間中的集合距離,因為其直觀易懂且可解釋性強(qiáng),被廣泛用于標(biāo)識兩個標(biāo)量元素的相異度。將上面兩個示例數(shù)據(jù)代入公式,可得兩者的歐氏距離為:
除歐氏距離外,常用作度量標(biāo)量相異度的還有曼哈頓距離和閔可夫斯基距離,兩者定義如下:
曼哈頓距離:
閔可夫斯基距離:
歐氏距離和曼哈頓距離可以看做是閔可夫斯基距離在p=2和p=1下的特例。另外這三種距離都可以加權(quán),這個很容易理解,不再贅述。
下面要說一下標(biāo)量的規(guī)格化問題。上面這樣計算相異度的方式有一點問題,就是取值范圍大的屬性對距離的影響高于取值范圍小的屬性。例如上述例子中第三個屬性的取值跨度遠(yuǎn)大于前兩個,這樣不利于真實反映真實的相異度,為了解決這個問題,一般要對屬性值進(jìn)行規(guī)格化。所謂規(guī)格化就是將各個屬性值按比例映射到相同的取值區(qū)間,這樣是為了平衡各個屬性對距離的影響。通常將各個屬性均映射到[0,1]區(qū)間,映射公式為:
其中max(ai)和min(ai)表示所有元素項中第i個屬性的最大值和最小值。例如,將示例中的元素規(guī)格化到[0,1]區(qū)間后,就變成了X’={1,0,1},Y’={0,1,0},重新計算歐氏距離約為1.732。
二元變量
所謂二元變量是只能取0和1兩種值變量,有點類似布爾值,通常用來標(biāo)識是或不是這種二值屬性。對于二元變量,上一節(jié)提到的距離不能很好標(biāo)識其相異度,我們需要一種更適合的標(biāo)識。一種常用的方法是用元素相同序位同值屬性的比例來標(biāo)識其相異度。
設(shè)有X={1,0,0,0,1,0,1,1},Y={0,0,0,1,1,1,1,1},可以看到,兩個元素第2、3、5、7和8個屬性取值相同,而第1、4和6個取值不同,那么相異度可以標(biāo)識為3/8=0.375。一般的,對于二元變量,相異度可用“取值不同的同位屬性數(shù)/單個元素的屬性位數(shù)”標(biāo)識。
上面所說的相異度應(yīng)該叫做對稱二元相異度?,F(xiàn)實中還有一種情況,就是我們只關(guān)心兩者都取1的情況,而認(rèn)為兩者都取0的屬性并不意味著兩者更相似。例如在根據(jù)病情對病人聚類時,如果兩個人都患有肺癌,我們認(rèn)為兩個人增強(qiáng)了相似度,但如果兩個人都沒患肺癌,并不覺得這加強(qiáng)了兩人的相似性,在這種情況下,改用“取值不同的同位屬性數(shù)/(單個元素的屬性位數(shù)-同取0的位數(shù))”來標(biāo)識相異度,這叫做非對稱二元相異度。如果用1減去非對稱二元相異度,則得到非對稱二元相似度,也叫Jaccard系數(shù),是一個非常重要的概念。
分類變量
分類變量是二元變量的推廣,類似于程序中的枚舉變量,但各個值沒有數(shù)字或序數(shù)意義,如顏色、民族等等,對于分類變量,用“取值不同的同位屬性數(shù)/單個元素的全部屬性數(shù)”來標(biāo)識其相異度。
序數(shù)變量
序數(shù)變量是具有序數(shù)意義的分類變量,通??梢园凑找欢樞蛞饬x排列,如冠軍、亞軍和季軍。對于序數(shù)變量,一般為每個值分配一個數(shù),叫做這個值的秩,然后以秩代替原值當(dāng)做標(biāo)量屬性計算相異度。
向量
對于向量,由于它不僅有大小而且有方向,所以閔可夫斯基距離不是度量其相異度的好辦法,一種流行的做法是用兩個向量的余弦度量,其度量公式為:
其中||X||表示X的歐幾里得范數(shù)。要注意,余弦度量度量的不是兩者的相異度,而是相似度!
聚類問題
在討論完了相異度計算的問題,就可以正式定義聚類問題了。
所謂聚類問題,就是給定一個元素集合D,其中每個元素具有n個可觀察屬性,使用某種算法將D劃分成k個子集,要求每個子集內(nèi)部的元素之間相異度盡可能低,而不同子集的元素相異度盡可能高。其中每個子集叫做一個簇。
與分類不同,分類是示例式學(xué)習(xí),要求分類前明確各個類別,并斷言每個元素映射到一個類別,而聚類是觀察式學(xué)習(xí),在聚類前可以不知道類別甚至不給定類別數(shù)量,是無監(jiān)督學(xué)習(xí)的一種。目前聚類廣泛應(yīng)用于統(tǒng)計學(xué)、生物學(xué)、數(shù)據(jù)庫技術(shù)和市場營銷等領(lǐng)域,相應(yīng)的算法也非常的多。本文僅介紹一種最簡單的聚類算法——k均值(k-means)算法。
K-means算法及其示例
k均值算法的計算過程非常直觀:
1、從D中隨機(jī)取k個元素,作為k個簇的各自的中心。
2、分別計算剩下的元素到k個簇中心的相異度,將這些元素分別劃歸到相異度最低的簇。
3、根據(jù)聚類結(jié)果,重新計算k個簇各自的中心,計算方法是取簇中所有元素各自維度的算術(shù)平均數(shù)。
4、將D中全部元素按照新的中心重新聚類。
5、重復(fù)第4步,直到聚類結(jié)果不再變化。
6、將結(jié)果輸出。
由于算法比較直觀,沒有什么可以過多講解的。下面,我們來看看k-means算法一個有趣的應(yīng)用示例:中國男足近幾年到底在亞洲處于幾流水平?
今年中國男足可算是杯具到家了,幾乎到了過街老鼠人人喊打的地步。對于目前中國男足在亞洲的地位,各方也是各執(zhí)一詞,有人說中國男足亞洲二流,有人說三流,還有人說根本不入流,更有人說其實不比日韓差多少,是亞洲一流。既然爭論不能解決問題,我們就讓數(shù)據(jù)告訴我們結(jié)果吧。
下圖是我采集的亞洲15只球隊在2005年-2010年間大型杯賽的戰(zhàn)績(由于澳大利亞是后來加入亞足聯(lián)的,所以這里沒有收錄)。
其中包括兩次世界杯和一次亞洲杯。我提前對數(shù)據(jù)做了如下預(yù)處理:對于世界杯,進(jìn)入決賽圈則取其最終排名,沒有進(jìn)入決賽圈的,打入預(yù)選賽十強(qiáng)賽賦予40,預(yù)選賽小組未出線的賦予50。對于亞洲杯,前四名取其排名,八強(qiáng)賦予5,十六強(qiáng)賦予9,預(yù)選賽沒出現(xiàn)的賦予17。這樣做是為了使得所有數(shù)據(jù)變?yōu)闃?biāo)量,便于后續(xù)聚類。
下面先對數(shù)據(jù)進(jìn)行[0,1]規(guī)格化,下面是規(guī)格化后的數(shù)據(jù):
接著用k-means算法進(jìn)行聚類。設(shè)k=3,即將這15支球隊分成三個集團(tuán)。
現(xiàn)抽取日本、巴林和泰國的值作為三個簇的種子,即初始化三個簇的中心為A:{0.3, 0, 0.19},B:{0.7, 0.76, 0.5}和C:{1, 1, 0.5}。下面,計算所有球隊分別對三個中心點的相異度,這里以歐氏距離度量。下面是我用程序求取的結(jié)果:
從做到右依次表示各支球隊到當(dāng)前中心點的歐氏距離,將每支球隊分到最近的簇,可對各支球隊做如下聚類:
中國C,日本A,韓國A,伊朗A,沙特A,伊拉克C,卡塔爾C,阿聯(lián)酋C,烏茲別克斯坦B,泰國C,越南C,阿曼C,巴林B,朝鮮B,印尼C。
第一次聚類結(jié)果:
A:日本,韓國,伊朗,沙特;
B:烏茲別克斯坦,巴林,朝鮮;
C:中國,伊拉克,卡塔爾,阿聯(lián)酋,泰國,越南,阿曼,印尼。
下面根據(jù)第一次聚類結(jié)果,調(diào)整各個簇的中心點。
A簇的新中心點為:{(0.3+0+0.24+0.3)/4=0.21, (0+0.15+0.76+0.76)/4=0.4175, (0.19+0.13+0.25+0.06)/4=0.1575} = {0.21, 0.4175, 0.1575}
用同樣的方法計算得到B和C簇的新中心點分別為{0.7, 0.7333, 0.4167},{1, 0.94, 0.40625}。
用調(diào)整后的中心點再次進(jìn)行聚類,得到:
第二次迭代后的結(jié)果為:
中國C,日本A,韓國A,伊朗A,沙特A,伊拉克C,卡塔爾C,阿聯(lián)酋C,烏茲別克斯坦B,泰國C,越南C,阿曼C,巴林B,朝鮮B,印尼C。
結(jié)果無變化,說明結(jié)果已收斂,于是給出最終聚類結(jié)果:
亞洲一流:日本,韓國,伊朗,沙特
亞洲二流:烏茲別克斯坦,巴林,朝鮮
亞洲三流:中國,伊拉克,卡塔爾,阿聯(lián)酋,泰國,越南,阿曼,印尼
看來數(shù)據(jù)告訴我們,說國足近幾年處在亞洲三流水平真的是沒有冤枉他們,至少從國際杯賽戰(zhàn)績是這樣的。
其實上面的分析數(shù)據(jù)不僅告訴了我們聚類信息,還提供了一些其它有趣的信息,例如從中可以定量分析出各個球隊之間的差距,例如,在亞洲一流隊伍中,日本與沙特水平最接近,而伊朗則相距他們較遠(yuǎn),這也和近幾年伊朗沒落的實際相符。另外,烏茲別克斯坦和巴林雖然沒有打進(jìn)近兩屆世界杯,不過憑借預(yù)算賽和亞洲杯上的出色表現(xiàn)占據(jù)B組一席之地,而朝鮮由于打入了2010世界杯決賽圈而有幸進(jìn)入B組,可是同樣奇跡般奪得2007年亞洲杯的伊拉克卻被分在三流,看來亞洲杯冠軍的分量還不如打進(jìn)世界杯決賽圈重啊。其它有趣的信息,有興趣的朋友可以進(jìn)一步挖掘。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
訓(xùn)練與驗證損失驟升:機(jī)器學(xué)習(xí)訓(xùn)練中的異常診斷與解決方案 在機(jī)器學(xué)習(xí)模型訓(xùn)練過程中,“損失曲線” 是反映模型學(xué)習(xí)狀態(tài)的核心指 ...
2025-09-19解析 DataHub 與 Kafka:數(shù)據(jù)生態(tài)中兩類核心工具的差異與協(xié)同 在數(shù)字化轉(zhuǎn)型加速的今天,企業(yè)對數(shù)據(jù)的需求已從 “存儲” 轉(zhuǎn)向 “ ...
2025-09-19CDA 數(shù)據(jù)分析師:讓統(tǒng)計基本概念成為業(yè)務(wù)決策的底層邏輯 統(tǒng)計基本概念是商業(yè)數(shù)據(jù)分析的 “基礎(chǔ)語言”—— 從描述數(shù)據(jù)分布的 “均 ...
2025-09-19CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-19SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學(xué)領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學(xué)計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學(xué)計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11