99999久久久久久亚洲,欧美人与禽猛交狂配,高清日韩av在线影院,一个人在线高清免费观看,啦啦啦在线视频免费观看www

熱線電話:13121318867

登錄
首頁精彩閱讀提升R代碼運(yùn)算效率的11個(gè)實(shí)用方法
提升R代碼運(yùn)算效率的11個(gè)實(shí)用方法
2016-09-15
收藏

提升R代碼運(yùn)算效率的11個(gè)實(shí)用方法

眾所周知,當(dāng)我們利用R語言處理大型數(shù)據(jù)集時(shí),for 循環(huán)語句的運(yùn)算效率非常低。有許多種方法可以提升你的代碼運(yùn)算效率,但或許你更想了解運(yùn)算效率能得到多大的提升。本文將介紹幾種適用于大數(shù)據(jù)領(lǐng)域的方法,包括簡單的邏輯調(diào)整設(shè)計(jì)、并行處理和 Rcpp 的運(yùn)用,利用這些方法你可以輕松地處理1億行以上的數(shù)據(jù)集。
讓我們嘗試提升往數(shù)據(jù)框中添加一個(gè)新變量過程(該過程中包含循環(huán)和判斷語句)的運(yùn)算效率。下面的代碼輸出原始數(shù)據(jù)框:

# Create the data frame
col1 <- runif (12^5, 0, 2)
col2 <- rnorm (12^5, 0, 2)
col3 <- rpois (12^5, 3)
col4 <- rchisq (12^5, 2)
df <- data.frame (col1, col2, col3, col4)

逐行判斷該數(shù)據(jù)框 (df) 的總和是否大于 4 ,如果該條件滿足,則對(duì)應(yīng)的新變量數(shù)值為 ’greaterthan4’ ,否則賦值為 ’lesserthan4’ 。

# Original R code: Before vectorization and pre-allocation
system.time({
  for (i in 1:nrow(df)) { # for every row
    if ((df[i, 'col1'] + df[i, 'col2'] + df[i, 'col3'] + df[i, 'col4']) > 4) { # check if > 4
      df[i, 5] <- "greater_than_4" # assign 5th column
    } else {
      df[i, 5] <- "lesser_than_4" # assign 5th column
    }
  }
})

本文中所有的計(jì)算都在配置了 2.6Ghz 處理器和 8GB 內(nèi)存的 MAC OS X 中運(yùn)行。

 1.向量化處理和預(yù)設(shè)數(shù)據(jù)庫結(jié)構(gòu)

  for (i in 1:nrow(df)) {
    if ((df[i, 'col1'] + df[i, 'col2'] + df[i, 'col3'] + df[i, 'col4']) > 4) {
      output[i] <- "greater_than_4"
    } else {
      output[i] <- "lesser_than_4"
    }
  }
df$output})

2.將條件語句判斷條件移至循環(huán)外

將條件判斷語句移至循環(huán)外可以提升代碼的運(yùn)算速度,接下來本文將利用包含 100,000行數(shù)據(jù)至 1,000,000 行數(shù)據(jù)的數(shù)據(jù)集進(jìn)行測試:

# after vectorization and pre-allocation, taking the condition checking outside the loop.
output <- character (nrow(df))
condition <- (df$col1 + df$col2 + df$col3 + df$col4) > 4  # condition check outside the loop
system.time({
  for (i in 1:nrow(df)) {
    if (condition[i]) {
      output[i] <- "greater_than_4"
    } else {
      output[i] <- "lesser_than_4"
    }
  }
  df$output <- output
})

3.只在條件語句為真時(shí)執(zhí)行循環(huán)過程

另一種優(yōu)化方法是預(yù)先將輸出變量賦值為條件語句不滿足時(shí)的取值,然后只在條件語句為真時(shí)執(zhí)行循環(huán)過程。此時(shí),運(yùn)算速度的提升程度取決于條件狀態(tài)中真值的比例。

本部分的測試將和 case(2) 部分進(jìn)行比較,和預(yù)想的結(jié)果一致,該方法確實(shí)提升了運(yùn)算效率。

output <- c(rep("lesser_than_4", nrow(df)))
condition <- (df$col1 + df$col2 + df$col3 + df$col4) > 4
system.time({
    for (i in (1:nrow(df))[condition]) {  # run loop only for true conditions
        if (condition[i]) {
            output[i] <- "greater_than_4"
        }
    }
    df$output
})

4.盡可能地使用 ifelse() 語句

利用 ifelse() 語句可以使你的代碼更加簡便。 ifelse() 的句法格式類似于 if() 函數(shù),但其運(yùn)算速度卻有了巨大的提升。即使是在沒有預(yù)設(shè)數(shù)據(jù)結(jié)構(gòu)且沒有簡化條件語句的情況下,其運(yùn)算效率仍高于上述的兩種方法。

system.time({
  output <- ifelse ((df$col1 + df$col2 + df$col3 + df$col4) > 4, "greater_than_4", "lesser_than_4")
  df$output <- output
})

5.使用 which() 語句

利用 which() 語句來篩選數(shù)據(jù)集,我們可以達(dá)到 Rcpp 三分之一的運(yùn)算速率。

# Thanks to Gabe Becker
system.time({
  want = which(rowSums(df) > 4)
  output = rep("less than 4", times = nrow(df))
  output[want] = "greater than 4"
})
# nrow = 3 Million rows (approx)
   user  system elapsed
  0.396   0.074   0.481

6.用 apply 族函數(shù)替代 for 循環(huán)語句

本部分將利用 apply() 函數(shù)來計(jì)算上文所提到的案例,并將其與向量化的循環(huán)語句進(jìn)行對(duì)比。該方法的運(yùn)算效率優(yōu)于原始方法,但劣于 ifelse() 和將條件語句置于循環(huán)外端的方法。該方法非常有用,但是當(dāng)你面對(duì)復(fù)雜的情形時(shí),你需要靈活運(yùn)用該函數(shù)。

# apply family
system.time({
  myfunc <- function(x) {
    if ((x['col1'] + x['col2'] + x['col3'] + x['col4']) > 4) {
      "greater_than_4"
    } else {
      "lesser_than_4"
    }
  }
  output <- apply(df[, c(1:4)], 1, FUN=myfunc)  # apply 'myfunc' on every row
  df$output <- output
})

7.利用compiler包編譯函數(shù)cmpfun()

這可能不是說明字節(jié)碼編譯有效性的最好例子,但是對(duì)于更復(fù)雜的函數(shù)而言,字節(jié)碼編譯將會(huì)表現(xiàn)地十分優(yōu)異,因此我們應(yīng)當(dāng)了解下該函數(shù)。

# byte code compilation
library(compiler)
myFuncCmp <- cmpfun(myfunc)
system.time({
  output <- apply(df[, c (1:4)], 1, FUN=myFuncCmp)
})

8.利用Rcpp

截至目前,我們已經(jīng)測試了好幾種提升運(yùn)算效率的方法,其中最佳的方法是利用ifelse()函數(shù)。如果我們將數(shù)據(jù)量增大十倍,運(yùn)算效率將會(huì)變成啥樣的呢?接下來我們將利用Rcpp來實(shí)現(xiàn)該運(yùn)算過程,并將其與ifelse()進(jìn)行比較。

下面是利用C++語言編寫的函數(shù)代碼,將其保存為“MyFunc.cpp”并利用sourceCpp進(jìn)行調(diào)用。

// Source for MyFunc.cpp
#include
using namespace Rcpp;
// [[Rcpp::export]]
CharacterVector myFunc(DataFrame x) {
  NumericVector col1 = as(x["col1"]);
  NumericVector col2 = as(x["col2"]);
  NumericVector col3 = as(x["col3"]);
  NumericVector col4 = as(x["col4"]);
  int n = col1.size();
  CharacterVector out(n);
  for (int i=0; i 4){
      out[i] = "greater_than_4";
    } else {
      out[i] = "lesser_than_4";
    }
  }
  return out;
}

9.利用并行運(yùn)算

并行運(yùn)算的代碼:

# parallel processing
library(foreach)
library(doSNOW)
cl <- makeCluster(4, type="SOCK") # for 4 cores machine
registerDoSNOW (cl)
condition <- (df$col1 + df$col2 + df$col3 + df$col4) > 4
# parallelization with vectorization
system.time({
  output <- foreach(i = 1:nrow(df), .combine=c) %dopar% {
    if (condition[i]) {
      return("greater_than_4")
    } else {
      return("lesser_than_4")
    }
  }
})

df$output <- output

10.盡早移除變量并恢復(fù)內(nèi)存容量

在進(jìn)行冗長的循環(huán)計(jì)算前,盡早地將不需要的變量移除掉。在每次循環(huán)迭代運(yùn)算結(jié)束時(shí)利用gc()函數(shù)恢復(fù)內(nèi)存也可以提升運(yùn)算速率。 

 11.利用內(nèi)存較小的數(shù)據(jù)結(jié)構(gòu)

在進(jìn)行冗長的循環(huán)計(jì)算前,盡早地將不需要的變量移除掉。在每次循環(huán)迭代運(yùn)算結(jié)束時(shí)利用gc()函數(shù)恢復(fù)內(nèi)存也可以提升運(yùn)算速率。 

data.table()是一個(gè)很好的例子,因?yàn)樗梢詼p少數(shù)據(jù)的內(nèi)存,這有助于加快運(yùn)算速率。

dt <- data.table(df)  # create the data.table
system.time({
  for (i in 1:nrow (dt)) {
    if ((dt[i, col1] + dt[i, col2] + dt[i, col3] + dt[i, col4]) > 4) {
      dt[i, col5:="greater_than_4"]  # assign the output as 5th column
    } else {
      dt[i, col5:="lesser_than_4"]  # assign the output as 5th column
    }
  }
})

總結(jié)

方法:速度, nrow(df)/time_taken = n 行每秒

原始方法:1X, 856.2255行每秒(正則化為1)

向量化方法:738X, 631578行每秒

只考慮真值情況:1002X,857142.9行每秒

ifelse:1752X,1500000行每秒

which:8806X,7540364行每秒

Rcpp:13476X,11538462行每秒


數(shù)據(jù)分析咨詢請掃描二維碼

若不方便掃碼,搜微信號(hào):CDAshujufenxi

數(shù)據(jù)分析師資訊
更多

OK
客服在線
立即咨詢
客服在線
立即咨詢
') } function initGt() { var handler = function (captchaObj) { captchaObj.appendTo('#captcha'); captchaObj.onReady(function () { $("#wait").hide(); }).onSuccess(function(){ $('.getcheckcode').removeClass('dis'); $('.getcheckcode').trigger('click'); }); window.captchaObj = captchaObj; }; $('#captcha').show(); $.ajax({ url: "/login/gtstart?t=" + (new Date()).getTime(), // 加隨機(jī)數(shù)防止緩存 type: "get", dataType: "json", success: function (data) { $('#text').hide(); $('#wait').show(); // 調(diào)用 initGeetest 進(jìn)行初始化 // 參數(shù)1:配置參數(shù) // 參數(shù)2:回調(diào),回調(diào)的第一個(gè)參數(shù)驗(yàn)證碼對(duì)象,之后可以使用它調(diào)用相應(yīng)的接口 initGeetest({ // 以下 4 個(gè)配置參數(shù)為必須,不能缺少 gt: data.gt, challenge: data.challenge, offline: !data.success, // 表示用戶后臺(tái)檢測極驗(yàn)服務(wù)器是否宕機(jī) new_captcha: data.new_captcha, // 用于宕機(jī)時(shí)表示是新驗(yàn)證碼的宕機(jī) product: "float", // 產(chǎn)品形式,包括:float,popup width: "280px", https: true // 更多配置參數(shù)說明請參見:http://docs.geetest.com/install/client/web-front/ }, handler); } }); } function codeCutdown() { if(_wait == 0){ //倒計(jì)時(shí)完成 $(".getcheckcode").removeClass('dis').html("重新獲取"); }else{ $(".getcheckcode").addClass('dis').html("重新獲取("+_wait+"s)"); _wait--; setTimeout(function () { codeCutdown(); },1000); } } function inputValidate(ele,telInput) { var oInput = ele; var inputVal = oInput.val(); var oType = ele.attr('data-type'); var oEtag = $('#etag').val(); var oErr = oInput.closest('.form_box').next('.err_txt'); var empTxt = '請輸入'+oInput.attr('placeholder')+'!'; var errTxt = '請輸入正確的'+oInput.attr('placeholder')+'!'; var pattern; if(inputVal==""){ if(!telInput){ errFun(oErr,empTxt); } return false; }else { switch (oType){ case 'login_mobile': pattern = /^1[3456789]\d{9}$/; if(inputVal.length==11) { $.ajax({ url: '/login/checkmobile', type: "post", dataType: "json", data: { mobile: inputVal, etag: oEtag, page_ur: window.location.href, page_referer: document.referrer }, success: function (data) { } }); } break; case 'login_yzm': pattern = /^\d{6}$/; break; } if(oType=='login_mobile'){ } if(!!validateFun(pattern,inputVal)){ errFun(oErr,'') if(telInput){ $('.getcheckcode').removeClass('dis'); } }else { if(!telInput) { errFun(oErr, errTxt); }else { $('.getcheckcode').addClass('dis'); } return false; } } return true; } function errFun(obj,msg) { obj.html(msg); if(msg==''){ $('.login_submit').removeClass('dis'); }else { $('.login_submit').addClass('dis'); } } function validateFun(pat,val) { return pat.test(val); }