
信息時代大數(shù)據(jù)的再認識
大數(shù)據(jù)已成為媒體與大眾關(guān)注的新技術(shù),大數(shù)據(jù)的應用也預示著信息時代將進入一個新階段,但人們對大數(shù)據(jù)的認識有一個不斷加深的過程。在當下的信息時代,我們對大數(shù)據(jù)應有新的再認識。
大數(shù)據(jù)興起預示信息時代進入新階段
中國已開始進入信息時代,但許多人的思想還停留在工業(yè)時代。經(jīng)濟和科技工作中出現(xiàn)的許多問題,其根源是對時代的認識不到位。經(jīng)濟新常態(tài)意味著中國進入了以信息化帶動新型工業(yè)化、城鎮(zhèn)化和農(nóng)業(yè)現(xiàn)代化的新階段。大數(shù)據(jù)、移動互聯(lián)網(wǎng)、社交網(wǎng)絡、云計算、物聯(lián)網(wǎng)等新一代信息技術(shù)構(gòu)成的IT架構(gòu)“第三平臺”是信息社會進入新階段的標志,對整個經(jīng)濟的轉(zhuǎn)型有引領(lǐng)和帶動作用。媒體上經(jīng)常出現(xiàn)的互聯(lián)網(wǎng)+、創(chuàng)客、“第二次機器革命”、“工業(yè)4.0”等都與大數(shù)據(jù)和云計算有關(guān)。大數(shù)據(jù)和云計算是新常態(tài)下提高生產(chǎn)率的新杠桿,所謂創(chuàng)新驅(qū)動發(fā)展就是主要依靠信息技術(shù)促進生產(chǎn)率的提高。
中國的大數(shù)據(jù)企業(yè)已經(jīng)有相當好的基礎(chǔ)。全球十大互聯(lián)網(wǎng)服務企業(yè)中國占有4席(阿里巴巴、騰訊、百度和京東),其他6個Top10 互聯(lián)網(wǎng)服務企業(yè)全部是美國企業(yè),歐洲和日本沒有互聯(lián)網(wǎng)企業(yè)進入Top10。這說明中國企業(yè)在基于大數(shù)據(jù)的互聯(lián)網(wǎng)服務業(yè)務上已處于世界前列。在發(fā)展大數(shù)據(jù)技術(shù)上,我國有可能改變過去30年技術(shù)受制于人的局面,在大數(shù)據(jù)應用上中國有可能在全世界起到引領(lǐng)作用。我們要吸取過去基礎(chǔ)研究為企業(yè)提供核心技術(shù)不夠的教訓,加強大數(shù)據(jù)基礎(chǔ)研究和前瞻技術(shù)研究,努力攻克大數(shù)據(jù)核心和關(guān)鍵技術(shù)。
理解大數(shù)據(jù)需要上升到文化和認識論的高度
數(shù)據(jù)文化的本質(zhì)是尊重客觀世界的實事求是精神,數(shù)據(jù)就是事實。重視數(shù)據(jù)就是強調(diào)用事實說話、按理性思維的科學精神。中國人的傳統(tǒng)習慣是定性思維而不是定量思維。目前許多城市在開展政府數(shù)據(jù)開放共享工作,但是發(fā)現(xiàn)多數(shù)老百姓對政府要開放的數(shù)據(jù)并不感興趣。要讓大數(shù)據(jù)走上健康的發(fā)展軌道,首先要大力弘揚數(shù)據(jù)文化。數(shù)據(jù)文化不只是大數(shù)據(jù)用于文藝、出版等文化產(chǎn)業(yè),而是指全民的數(shù)據(jù)意識。全社會應認識到:信息化的核心是數(shù)據(jù),只有政府和大眾都關(guān)注數(shù)據(jù)時,才能真正理解信息化的實質(zhì);數(shù)據(jù)是一種新的生產(chǎn)要素,大數(shù)據(jù)的利用可以改變資本和土地等傳統(tǒng)要素在經(jīng)濟中的權(quán)重。
提高數(shù)據(jù)意識的關(guān)鍵是要理解大數(shù)據(jù)的戰(zhàn)略意義。數(shù)據(jù)是與物質(zhì)、能源一樣重要的戰(zhàn)略資源,數(shù)據(jù)的采集和分析涉及每一個行業(yè),是帶有全局性和戰(zhàn)略性的技術(shù)。從硬技術(shù)到軟技術(shù)的轉(zhuǎn)變是當今全球性的技術(shù)發(fā)展趨勢,而從數(shù)據(jù)中發(fā)現(xiàn)價值的技術(shù)正是最有活力的軟技術(shù),數(shù)據(jù)技術(shù)與數(shù)據(jù)產(chǎn)業(yè)的落后將使我們像錯過工業(yè)革命機會一樣延誤一個時代。
正確認識大數(shù)據(jù)的價值和效益
人們總是期望從大數(shù)據(jù)中挖掘出意想不到的“大價值”。實際上大數(shù)據(jù)的價值主要體現(xiàn)在它的驅(qū)動效應,即帶動有關(guān)的科研和產(chǎn)業(yè)發(fā)展,提高各行各業(yè)通過數(shù)據(jù)分析解決困難問題和增值的能力。大數(shù)據(jù)對經(jīng)濟的貢獻并不完全反映在大數(shù)據(jù)公司的直接收入上,應考慮對其他行業(yè)效率和質(zhì)量提高的貢獻。大數(shù)據(jù)是典型的通用技術(shù),理解通用技術(shù)要采用“蜜蜂模型”:蜜蜂的效益主要不是自己釀的蜂蜜,而是蜜蜂傳粉對農(nóng)業(yè)的貢獻。
有一個家喻戶曉的寓言可以從一個角度說明大數(shù)據(jù)的價值:一位老農(nóng)民臨終前告訴他的3個兒子,他在他家的地中埋藏了一罐金子,但沒有講埋在哪里。他的兒子們把他家所有的地都深挖了一遍,沒有挖到金子,但由于深挖了土地,從此莊稼收成特別好。數(shù)據(jù)收集、分析的能力提高了,即使沒有發(fā)現(xiàn)什么普適的規(guī)律或令人完全想不到的新知識,大數(shù)據(jù)的價值也已逐步體現(xiàn)。
大數(shù)據(jù)研究和應用要改變過去各部門和各學科相互分割、獨立發(fā)展的傳統(tǒng)思路,重點不是支持單項技術(shù)和單個方法的發(fā)展,而是強調(diào)不同部門、不同學科的協(xié)作。數(shù)據(jù)科學不是垂直的“煙囪”,而是像環(huán)境、能源科學一樣的橫向集成科學。
從復雜性的角度看大數(shù)據(jù)研究和應用面臨的挑戰(zhàn)
圖文檢索、主題發(fā)現(xiàn)、語義分析、情感分析等數(shù)據(jù)分析工作十分困難,其原因是大數(shù)據(jù)涉及復雜的類型、復雜的結(jié)構(gòu)和復雜的模式,數(shù)據(jù)本身具有很高的復雜性。大數(shù)據(jù)的復雜性還體現(xiàn)在數(shù)據(jù)之間的相互關(guān)聯(lián)。大數(shù)據(jù)計算不能像處理小樣本數(shù)據(jù)集那樣做全局數(shù)據(jù)的統(tǒng)計分析和迭代計算,在分析大數(shù)據(jù)時,需要重新審視和研究它的可計算性、計算復雜性和求解算法。
大數(shù)據(jù)應用本質(zhì)上是在給定的時間、空間限制下,如何“算得多”。從“算得快”到“算得多”,考慮計算復雜性的思維邏輯有很大的轉(zhuǎn)變。所謂“算得多”并不是計算的數(shù)據(jù)量越大越好,需要探索從足夠多的數(shù)據(jù),到剛剛好的數(shù)據(jù),再到有價值的數(shù)據(jù)的按需約簡方法。
發(fā)展大數(shù)據(jù)應避免的誤區(qū)
不要一味追求“數(shù)據(jù)規(guī)模大”。大數(shù)據(jù)主要難點不是數(shù)據(jù)量大,而是數(shù)據(jù)類型多樣、要求及時回應和原始數(shù)據(jù)真假難辨?,F(xiàn)有數(shù)據(jù)庫軟件解決不了非結(jié)構(gòu)化數(shù)據(jù),要重視數(shù)據(jù)融合、數(shù)據(jù)格式的標準化和數(shù)據(jù)的互操作。采集的數(shù)據(jù)往往質(zhì)量不高是大數(shù)據(jù)的特點之一,但盡可能提高原始數(shù)據(jù)的質(zhì)量仍然值得重視。腦科學研究的最大問題就是采集的數(shù)據(jù)可信度差,基于可信度很差的數(shù)據(jù)難以分析出有價值的結(jié)果。
一味追求數(shù)據(jù)規(guī)模大不僅會造成浪費,而且效果未必很好。多個來源的小數(shù)據(jù)的集成融合可能挖掘出單一來源大數(shù)據(jù)得不到的大價值。應多在數(shù)據(jù)的融合技術(shù)上下功夫,重視數(shù)據(jù)的開放與共享。所謂數(shù)據(jù)規(guī)模大與應用領(lǐng)域有密切關(guān)系,有些領(lǐng)域幾個PB的數(shù)據(jù)未必算大,有些領(lǐng)域可能幾十TB已經(jīng)是很大的規(guī)模。
發(fā)展大數(shù)據(jù)不能無止境地追求“更大、更多、更快”,要走低成本、低能耗、惠及大眾、公正法治的良性發(fā)展道路。要像現(xiàn)在治理環(huán)境污染一樣,及早關(guān)注大數(shù)據(jù)可能帶來的“污染”和侵犯隱私等各種弊端。
不要“技術(shù)驅(qū)動”,要“應用為先”。新的信息技術(shù)層出不窮,信息領(lǐng)域不斷冒出新概念、新名詞,估計繼“大數(shù)據(jù)”以后,“認知計算”、“可穿戴設備”、“機器人”等新技術(shù)又會進入炒作高峰。我們習慣于跟隨國外的熱潮,往往不自覺地跟著技術(shù)潮流走,最容易走上“技術(shù)驅(qū)動”的道路。實際上發(fā)展信息技術(shù)的目的是為人服務,檢驗一切技術(shù)的唯一標準是應用。發(fā)展大數(shù)據(jù)產(chǎn)業(yè)一定要堅持“應用為先”的發(fā)展戰(zhàn)略,堅持應用牽引的技術(shù)路線。技術(shù)有限,應用無限。各地發(fā)展云計算和大數(shù)據(jù),一定要通過政策和各種措施調(diào)動應用部門和創(chuàng)新企業(yè)的積極性,通過跨界的組合創(chuàng)新開拓新的應用,從應用中找出路。
不能拋棄“小數(shù)據(jù)”方法。流行的“大數(shù)據(jù)”定義是:無法通過目前主流軟件工具在合理時間內(nèi)采集、存儲、處理的數(shù)據(jù)集。這是用不能勝任的技術(shù)定義問題,可能導致認識的誤區(qū)。按照這種定義,人們可能只會重視目前解決不了的問題,如同走路的人想踩著自己身前的影子。其實,目前各行各業(yè)碰到的數(shù)據(jù)處理多數(shù)還是“小數(shù)據(jù)”問題。我們應重視實際碰到的問題,不管是大數(shù)據(jù)還是小數(shù)據(jù)。
大數(shù)據(jù)界流行一種看法:大數(shù)據(jù)不需要分析因果關(guān)系、不需要采樣、不需要精確數(shù)據(jù)。這種觀念不能絕對化,實際工作中要邏輯演繹和歸納相結(jié)合、白盒與黑盒研究相結(jié)合、大數(shù)據(jù)方法與小數(shù)據(jù)方法相結(jié)合。
要高度關(guān)注構(gòu)建大數(shù)據(jù)平臺的成本。目前全國各地都在建設大數(shù)據(jù)中心,呂梁山下都建立了容量達2 PB以上的數(shù)據(jù)處理中心,許多城市公安部門要求存儲3個月以上的高清監(jiān)控錄像。這些系統(tǒng)的成本都非常高。數(shù)據(jù)挖掘的價值是用成本換來的,不能不計成本,盲目建設大數(shù)據(jù)系統(tǒng)。什么數(shù)據(jù)需要保存,要保存多少時間,應當根據(jù)可能的價值和所需的成本來決定。大數(shù)據(jù)系統(tǒng)技術(shù)還在研究之中,美國的E級超級計算機系統(tǒng)要求能耗降低1000倍,計劃到2024年才能研制出來,用現(xiàn)在的技術(shù)構(gòu)建的巨型系統(tǒng)能耗極高。
我們不要攀比大數(shù)據(jù)系統(tǒng)的規(guī)模,而是要比實際應用效果,比完成同樣的事消耗更少的資源和能量。先抓老百姓最需要的大數(shù)據(jù)應用,因地制宜發(fā)展大數(shù)據(jù)。發(fā)展大數(shù)據(jù)與實現(xiàn)信息化的策略一樣:目標要遠大、起步要精準、發(fā)展要快速。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
訓練與驗證損失驟升:機器學習訓練中的異常診斷與解決方案 在機器學習模型訓練過程中,“損失曲線” 是反映模型學習狀態(tài)的核心指 ...
2025-09-19解析 DataHub 與 Kafka:數(shù)據(jù)生態(tài)中兩類核心工具的差異與協(xié)同 在數(shù)字化轉(zhuǎn)型加速的今天,企業(yè)對數(shù)據(jù)的需求已從 “存儲” 轉(zhuǎn)向 “ ...
2025-09-19CDA 數(shù)據(jù)分析師:讓統(tǒng)計基本概念成為業(yè)務決策的底層邏輯 統(tǒng)計基本概念是商業(yè)數(shù)據(jù)分析的 “基礎(chǔ)語言”—— 從描述數(shù)據(jù)分布的 “均 ...
2025-09-19CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-19SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18DSGE 模型中的 Et:理性預期算子的內(nèi)涵、作用與應用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應用 在數(shù)據(jù)分析與統(tǒng)計學領(lǐng)域,假設檢驗是驗證研究假設、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務系統(tǒng)落地過程中,“業(yè)務邏輯” 是連接 “需求設計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11