
數(shù)據(jù)分析中常犯哪些錯誤以及如何解決?
在大大小小的數(shù)據(jù)分析中會因為各種原因犯不同的錯誤都是哪方面的呢,又如何解決?
錯把相關(guān)性當成因果性 correlation vs. causation
經(jīng)典的冰淇凌銷量和游泳溺水人數(shù)成正比的數(shù)據(jù),這并不能說明冰淇凌銷量的增加會導致更多的人溺水,而只能說明二者相關(guān),比如因為天熱所以二者數(shù)量都增加了。這個例子比較明顯,說起來可能會有人覺得怎么會有人犯這樣的錯誤,然而在實際生活、學習、工作中,時不時的就會有人犯這樣的錯誤。
舉個栗子
數(shù)據(jù)顯示,當科比出手10-19次時,湖人的勝率是71.5%;當科比出手20-29次時,湖人的勝率驟降到60.8%;而當科比出手30次或者更多時,湖人的勝率只有41.7%。
根據(jù)這組數(shù)據(jù),為了贏球,科比應該少出手?并不一定如此。有可能科比出手少的時候是因為隊友狀態(tài)好,并不需要他出手太多。也有可能是因為球隊早早領(lǐng)先,垃圾時間太多。而出手太多的比賽是因為比賽艱難或者隊友狀態(tài)不好,需要他挺身而出。當然,以上也只是可能之一,具體是什么情況光靠這組數(shù)據(jù)并不能得出任何結(jié)論。
幸存者偏差 survivorship bias
數(shù)據(jù)分析中看到的樣本是“幸存了某些經(jīng)歷”才被觀察到的,進而導致結(jié)論不正確。
比如比爾蓋茨、喬布斯、扎克伯格都沒有念完大學,所以大家都應該退學去創(chuàng)業(yè)。這一結(jié)論的最大問題在于那些退學而又沒有成功的例子,很多時候我們是看不到的。另一方面,他們是因為牛逼才退學,而不是退學才牛逼的,看,相關(guān)性/因果性真是限魂不散。
再比如 Uber 發(fā)現(xiàn)新用戶有10塊錢優(yōu)惠券,但是平均評價卻只有3星。相反,第二次再用的時候沒有優(yōu)惠券了,評價卻高達4星半。這說明,不給優(yōu)惠券用戶評價會更高,果然用戶雖然愛用優(yōu)惠券,但內(nèi)心還是覺得便宜沒好東西的?很明顯,幸存者偏差在這個例子里體現(xiàn)在那些打一星二星評價的用戶,之后可能就沒有第二次了。更明顯的,這個例子是我瞎扯的。
樣本跟整體存在著本質(zhì)的不同
以知乎為例,會有種錯覺人人年薪百萬,985/211起,各種GFSBFM,天朝收入水平直逼灣區(qū)碼工。然而一方面這是幸存者偏差,知乎大V們的發(fā)聲更容易被看到(看,幸存者偏差也是陰魂不散)。另一方面,不要小瞧知乎跟天朝網(wǎng)民的差別,以及天朝網(wǎng)民跟天朝老百姓的差別–樣本跟整體的差別。
類似的例子有水木的工作版塊、步行街的收入和華人網(wǎng)站的貧困線。
過于追逐統(tǒng)計上的顯著性 statistical significance
統(tǒng)計101告訴我們,要比較兩組數(shù)是否不同,最基本的一點可以看它們的區(qū)別是不是統(tǒng)計上顯著。
比如 Linkedin 又要改版了(我為什么要說又呢),有兩個版本 A 和 B. 灰度測試發(fā)現(xiàn),跟現(xiàn)有版本比起來,A 的日活比現(xiàn)有版本高20%,但是統(tǒng)計不顯著。而 B 的日活跟現(xiàn)有版本雖然只高了3%,但是統(tǒng)計顯著。于是 PM 拿出統(tǒng)計101翻到第二頁說,來,咱們把統(tǒng)計顯著的版本 B 上線吧??啾频臄?shù)據(jù)科學家 DS 說,等一下!并不是所有時候都選統(tǒng)計顯著的那一個,咱們再看看版本 A 的數(shù)據(jù)吧(具體分析略過一萬字)。
很顯然,這個例子也是我瞎扯的。
不做數(shù)據(jù)可視化,以及更可怕的:做出錯誤或者帶誤導性的數(shù)據(jù)可視化
數(shù)據(jù)分析提供的結(jié)果和建議不具有可行性
twitter通過分析文本數(shù)據(jù)發(fā)現(xiàn)。。。
算了,我編不出來,由此可見,不具有可行性的結(jié)果雖然是“理論正確‘的分析結(jié)果,然并卵。。。
別笑,據(jù)以前的校內(nèi)后來的人人現(xiàn)在不知道叫什么的 PM 說,這是真的。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
解析 DataHub 與 Kafka:數(shù)據(jù)生態(tài)中兩類核心工具的差異與協(xié)同 在數(shù)字化轉(zhuǎn)型加速的今天,企業(yè)對數(shù)據(jù)的需求已從 “存儲” 轉(zhuǎn)向 “ ...
2025-09-19CDA 數(shù)據(jù)分析師:讓統(tǒng)計基本概念成為業(yè)務(wù)決策的底層邏輯 統(tǒng)計基本概念是商業(yè)數(shù)據(jù)分析的 “基礎(chǔ)語言”—— 從描述數(shù)據(jù)分布的 “均 ...
2025-09-19CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-19SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18DSGE 模型中的 Et:理性預期算子的內(nèi)涵、作用與應用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應用 在數(shù)據(jù)分析與統(tǒng)計學領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11