
基于數據分析的產品思維模式
數據分析( Data Analysis )——這個詞真的是如雷貫耳,裝B一絕啊!甭管什么玩意,上來先整一通再說?!皵祿治觥鄙跏潜惶嵘狭松駢?,找工作或者聊點行業(yè)內的動態(tài)不提點數據簡直是沒法混了。坦白講,我對“數據分析”的概念知之甚少,僅有的那點理解:統(tǒng)計數據,分析數據,大數據(Big Data)。
正文
如何對產品進行數據分析呢?或者說對我這樣的一個數據分析小白來講,該從何入手數據分析呢? 思維方式決定行動結果。
數據分析的思維方式
第一要點:什么是數據分析?
數據分析是指用適當的統(tǒng)計分析方法對收集來的大量數據進行分析,提取有用信息和形成結論而對數據加以詳細研究和概括總結的過程。在實際應用中,數據分析可幫助人們作出判斷,以便采取適當行動。當然,在我看來數據本身并沒有任何價值,正是由于分析方法的存在使得原本毫無價值的數據大放異彩。
第二要點:為什么數據分析?
有人說,老板要看數據;也有人說,VC投資需要;也有人說,公司運營需要... 產生數據需求的原因有很多,我想現(xiàn)實中大多數人做數據還是為了獲得產品的客觀現(xiàn)狀并有所為的。(我能這樣想,大概是因為我是個樂觀的孩子吧?)
事實上,數據分析的原因大概如下幾點:
1、評估產品機會:產品構思初期,必要的需求調研及市場調研顯得尤為關鍵。產品機會評估對后期產品設計及迭代都至關重要,甚至說決定了一個產品的未來和核心理念。
2、分析解決問題:產品出現(xiàn)不良狀況,肯定是存在緣由的。不可能憑空想象臆造問題,必須尊重客觀現(xiàn)實。那么只有通過必要的數據試驗才能追溯到問題源頭,進而制定合理的解決方案,徹底解決問題。
3、支持運營活動:你這個產品功能上線后效果怎么樣?A方案和B方案哪個更好些呢?諸如此類的問題,都牽涉到一個“標準”的問題。評判一個問題的好壞,最可靠的恐怕就是數據了。以前我就說過“人是不可靠的,人們總是愿意相信自己想看見的東西。”只有給出真實、可靠、客觀的事實——數據,才能對具體的活動作出最真實的評判。
4、預測優(yōu)化產品:數據分析的結果不僅可以反應出以往產品的狀態(tài),即所謂的后見性數據;也可以給出產品未來時間段內可能會遇到的問題,即所謂的先見性數據。一個真正的數據指標必須是可付諸行動的。后見性和先見性的數據都可以付諸行動,區(qū)別只是先見性數據能預測未來發(fā)生什么,縮短迭代周期,精益求精。
第三要點:如何數據分析?
1、數據建模:明白了數據分析動機,究竟什么樣的數據指標才能達到期望的效果呢?那么首先必須解決數據指標的定義,個人認為搭建數據指標模型大致要考慮以下三大要素:
a.綜合考慮商業(yè)模式與業(yè)務場景
b.聚焦數據指標背后的最初動機
c.多維度考慮數據可行、簡約、易比對
當然,也不能憑空瞎造數據吧?!數據指標模型一般有以下三個途徑設計:
a.對現(xiàn)有指標進行優(yōu)化性改造,數據指標之間合理交叉或許會帶來意想不到的驚喜;
b.不同行業(yè)交叉借鑒其他行業(yè)制定的數據指標;
c.潛心修行、發(fā)掘更多有價值有意義的數據指標;(這一點有點扯...)
數據分析目標的調整,必然伴隨數據指標的變動。 尊重事實、實事求是,了解數據指標的調整的意義及可能給產品帶來的后續(xù)影響,我覺得這是一種可取的改變態(tài)度。如果說只是為了改變而改變,無視事實、較低期望,這樣的調整還有何意義呢?
數據分析過程
2、數據來源:數據分析的對象是數據,數據從哪來?數據本身的準確性從根本上影響著分析結果的有效性,所以確保有效、靠譜的數據來源至關重要。本人認為數據來源無非以下三種:
a.自有數據分析系統(tǒng)——公司自有的數據是最源質化的數據,也是最可靠、最全面的。一般而言,有條件的情況下都是以內部數據為準;當然,創(chuàng)業(yè)型的微型公司大多都直接數據庫導出數據,還是要依賴產品經理二次加工的。
b.定量/定性調研——沒有全面的數據咋辦?或者說想要分析的數據無法統(tǒng)計?那么,拿起電話、走上街頭、發(fā)放問卷都不失為一種可行的辦法。定量數據排斥主管因素,定性數據吸納主管因素。事實上,定性數據存在諸多不確定性,但也存在一個其他數據指標不具備的優(yōu)勢——那是與真實用戶交流所得,有血有肉。
c.專業(yè)調研機構——知名調研機構,比如:艾瑞咨詢、百度統(tǒng)計、易觀智庫、199IT-互聯(lián)網數據中心。一般而言,權威結構統(tǒng)計調研的數據還是具有極強的參考性的,但也不能完全免于主觀因素。
3、數據分析:單純的數據并不能為給我們帶來太多結論性的東西,還是要借助一定的方法和手段將數據變得更加生動和有意義。
a.集成開發(fā)數據分析系統(tǒng)——將所需的數據指標以技術手段直接設計成產品功能,可以定期定量地直接生成導出BI報表。
b.手動數據加工——面對元數據而不是現(xiàn)成的結論性數據,產品經理只能親自操刀借助EXCEL各種函數。面對海量數據,心態(tài)很重要!
c.委托分析機構——有錢、任性、夠叼,請人分析。如果事事都依靠別人,那么產品經理就瞬間失去價值了...
4、分析方法:有效的數據分析方法能夠深度挖掘數據的價值,精益數據分析中大致介紹以下三種分析方法。
a.市場細分(Segmentation)——市場細分就是一群擁有某種共同特征的劃為一個樣本,市場細分不盡可以應用于互聯(lián)網產品,對任何行業(yè)、任何形式的產品都具有積極的參考意義。
b.同期群分析(Coghort Analysis)——比較相似群體隨時間的變化,同期群分析給我們提供了一個全新的視角。能夠觀察處于生命周期不同階段用戶的行為模式,而非忽略用戶的行為的過程性。
c.多變量測試(Multivariate Testing)——同時對多個因素進行分析,用統(tǒng)計學的方法剝離出單個影響要與結果中的某一項指標提升的關聯(lián)性。同時改動產品的多個方面,看哪個與結果的相關性最大。
行文小結
數據分析的核心并不在于數據本身,而在于設計有意義、有價值的數據指標,通過科學有效的手段去分析,進而發(fā)現(xiàn)問題優(yōu)化迭代。數據分析因價值而存在,數據分析本就是一個價值增量的過程。 無論分析給出的結果是積極還是負面,都是價值承載體,必須以客觀的態(tài)度面對。管理學大師彼得.德魯克說過: 你無法衡量的東西,你也無法管理。 數據分析可以有效的制衡產品經理本身的那種內在妄想,通過數據分析能幫助我們找到更加合適的產品和市場,甚至說締造出一個更加可持續(xù)、可復制、持續(xù)在增長的商業(yè)模式。
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數的日期轉換:從基礎用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數據處理中,日期格式轉換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關聯(lián)查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數據庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數據分析師:表結構數據 “獲取 - 加工 - 使用” 全流程的賦能者 表結構數據(如數據庫表、Excel 表、CSV 文件)是企業(yè)數字 ...
2025-09-18DSGE 模型中的 Et:理性預期算子的內涵、作用與應用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數據分析師:解鎖表結構數據特征價值的專業(yè)核心 表結構數據(以 “行 - 列” 規(guī)范存儲的結構化數據,如數據庫表、Excel 表、 ...
2025-09-17Excel 導入數據含缺失值?詳解 dropna 函數的功能與實戰(zhàn)應用 在用 Python(如 pandas 庫)處理 Excel 數據時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應用 在數據分析與統(tǒng)計學領域,假設檢驗是驗證研究假設、判斷數據差異是否 “ ...
2025-09-16CDA 數據分析師:掌控表格結構數據全功能周期的專業(yè)操盤手 表格結構數據(以 “行 - 列” 存儲的結構化數據,如 Excel 表、數據 ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網絡請求開發(fā)時(如使用requests ...
2025-09-15CDA 數據分析師:激活表格結構數據價值的核心操盤手 表格結構數據(如 Excel 表格、數據庫表)是企業(yè)最基礎、最核心的數據形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調用、數據爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數據的科學計數法問題 為幫助 Python 數據從業(yè)者解決pd.read_csv讀取長浮點數據時的科學計數法問題 ...
2025-09-12CDA 數據分析師:業(yè)務數據分析步驟的落地者與價值優(yōu)化者 業(yè)務數據分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務邏輯:從規(guī)則拆解到數據把關的實戰(zhàn)指南 在業(yè)務系統(tǒng)落地過程中,“業(yè)務邏輯” 是連接 “需求設計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數據驅動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數據分析師與戰(zhàn)略 / 業(yè)務數據分析:概念辨析與協(xié)同價值 在數據驅動決策的體系中,“戰(zhàn)略數據分析”“業(yè)務數據分析” 是企業(yè) ...
2025-09-11Excel 數據聚類分析:從操作實踐到業(yè)務價值挖掘 在數據分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數據中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數據解讀到決策支撐的價值導向 統(tǒng)計模型作為數據分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10