
一篇對(duì)大數(shù)據(jù)深度思考的文章,讓你認(rèn)識(shí)并讀懂大數(shù)據(jù)(二)
大數(shù)據(jù)常和云計(jì)算聯(lián)系到一起,因?yàn)閷?shí)時(shí)的大型數(shù)據(jù)集分析需要分布式處理框架來向數(shù)十、數(shù)百或甚至數(shù)萬的電腦分配工作。可以說,云計(jì)算充當(dāng)了工業(yè)革命時(shí)期的發(fā)動(dòng)機(jī)的角色,而大數(shù)據(jù)則是電。
云計(jì)算思想的起源是麥卡錫在上世紀(jì)60年代提出的:把計(jì)算能力作為一種像水和電一樣的公用事業(yè)提供給用戶。
如今,在Google、Amazon、Facebook等一批互聯(lián)網(wǎng)企業(yè)引領(lǐng)下,一種行之有效的模式出現(xiàn)了:云計(jì)算提供基礎(chǔ)架構(gòu)平臺(tái),大數(shù)據(jù)應(yīng)用運(yùn)行在這個(gè)平臺(tái)上。
業(yè)內(nèi)是這么形容兩者的關(guān)系:沒有大數(shù)據(jù)的信息積淀,則云計(jì)算的計(jì)算能力再強(qiáng)大,也難以找到用武之地;沒有云計(jì)算的處理能力,則大數(shù)據(jù)的信息積淀再豐富,也終究只是鏡花水月。
那么大數(shù)據(jù)到底需要哪些云計(jì)算技術(shù)呢?
這里暫且列舉一些,比如虛擬化技術(shù),分布式處理技術(shù),海量數(shù)據(jù)的存儲(chǔ)和管理技術(shù),NoSQL、實(shí)時(shí)流數(shù)據(jù)處理、智能分析技術(shù)(類似模式識(shí)別以及自然語言理解)等。
云計(jì)算和大數(shù)據(jù)之間的關(guān)系可以用下面的一張圖來說明,兩者之間結(jié)合后會(huì)產(chǎn)生如下效應(yīng):可以提供更多基于海量業(yè)務(wù)數(shù)據(jù)的創(chuàng)新型服務(wù);通過云計(jì)算技術(shù)的不斷發(fā)展降低大數(shù)據(jù)業(yè)務(wù)的創(chuàng)新成本。
如果將云計(jì)算與大數(shù)據(jù)進(jìn)行一些比較,最明顯的區(qū)分在兩個(gè)方面:
第一,在概念上兩者有所不同,云計(jì)算改變了IT,而大數(shù)據(jù)則改變了業(yè)務(wù)。然而大數(shù)據(jù)必須有云作為基礎(chǔ)架構(gòu),才能得以順暢運(yùn)營。
第二,大數(shù)據(jù)和云計(jì)算的目標(biāo)受眾不同,云計(jì)算是CIO等關(guān)心的技術(shù)層,是一個(gè)進(jìn)階的IT解決方案。而大數(shù)據(jù)是CEO關(guān)注的、是業(yè)務(wù)層的產(chǎn)品,而大數(shù)據(jù)的決策者是業(yè)務(wù)層。
分布式處理技術(shù)
分布式處理系統(tǒng)可以將不同地點(diǎn)的或具有不同功能的或擁有不同數(shù)據(jù)的多臺(tái)計(jì)算機(jī)用通信網(wǎng)絡(luò)連接起來,在控制系統(tǒng)的統(tǒng)一管理控制下,協(xié)調(diào)地完成信息處理任務(wù)—這就是分布式處理系統(tǒng)的定義。
以Hadoop(Yahoo)為例進(jìn)行說明,Hadoop是一個(gè)實(shí)現(xiàn)了MapReduce模式的能夠?qū)Υ罅繑?shù)據(jù)進(jìn)行分布式處理的軟件框架,是以一種可靠、高效、可伸縮的方式進(jìn)行處理的。
而MapReduce是Google提出的一種云計(jì)算的核心計(jì)算模式,是一種分布式運(yùn)算技術(shù),也是簡(jiǎn)化的分布式編程模式,MapReduce模式的主要思想是將自動(dòng)分割要執(zhí)行的問題(例如程序)拆解成map(映射)和reduce(化簡(jiǎn))的方式, 在數(shù)據(jù)被分割后通過Map 函數(shù)的程序?qū)?shù)據(jù)映射成不同的區(qū)塊,分配給計(jì)算機(jī)機(jī)群處理達(dá)到分布式運(yùn)算的效果,在通過Reduce 函數(shù)的程序?qū)⒔Y(jié)果匯整,從而輸出開發(fā)者需要的結(jié)果。
再來看看Hadoop的特性,第一,它是可靠的,因?yàn)樗僭O(shè)計(jì)算元素和存儲(chǔ)會(huì)失敗,因此它維護(hù)多個(gè)工作數(shù)據(jù)副本,確保能夠針對(duì)失敗的節(jié)點(diǎn)重新分布處理。其次,Hadoop 是高效的,因?yàn)樗圆⑿械姆绞焦ぷ?,通過并行處理加快處理速度。Hadoop 還是可伸縮的,能夠處理 PB 級(jí)數(shù)據(jù)。此外,Hadoop 依賴于社區(qū)服務(wù)器,因此它的成本比較低,任何人都可以使用。
你也可以這么理解Hadoop的構(gòu)成,Hadoop=HDFS(文件系統(tǒng),數(shù)據(jù)存儲(chǔ)技術(shù)相關(guān))+HBase(數(shù)據(jù)庫)+MapReduce(數(shù)據(jù)處理)+……Others
Hadoop用到的一些技術(shù)有:
HDFS: Hadoop分布式文件系統(tǒng)(Distributed File System) – HDFS (HadoopDistributed File System)
MapReduce:并行計(jì)算框架
HBase: 類似Google BigTable的分布式NoSQL列數(shù)據(jù)庫。
Hive:數(shù)據(jù)倉庫工具,由Facebook貢獻(xiàn)。
Zookeeper:分布式鎖設(shè)施,提供類似Google Chubby的功能,由Facebook貢獻(xiàn)。
Avro:新的數(shù)據(jù)序列化格式與傳輸工具,將逐步取代Hadoop原有的IPC機(jī)制。
Pig:大數(shù)據(jù)分析平臺(tái),為用戶提供多種接口。
Ambari:Hadoop管理工具,可以快捷的監(jiān)控、部署、管理集群。
Sqoop:用于在Hadoop與傳統(tǒng)的數(shù)據(jù)庫間進(jìn)行數(shù)據(jù)的傳遞。
說了這么多,舉個(gè)實(shí)際的例子,雖然這個(gè)例子有些陳舊,但是淘寶的海量數(shù)據(jù)技術(shù)架構(gòu)還是有助于我們理解對(duì)于大數(shù)據(jù)的運(yùn)作處理機(jī)制:
淘寶大數(shù)據(jù)
如上圖所示,淘寶的海量數(shù)據(jù)產(chǎn)品技術(shù)架構(gòu)分為五個(gè)層次,從上至下來看它們分別是:數(shù)據(jù)源,計(jì)算層,存儲(chǔ)層,查詢層和產(chǎn)品層。
數(shù)據(jù)來源層:存放著淘寶各店的交易數(shù)據(jù)。在數(shù)據(jù)源層產(chǎn)生的數(shù)據(jù),通過DataX,DbSync和Timetunel準(zhǔn)實(shí)時(shí)的傳輸?shù)较旅娴?點(diǎn)所述的“云梯”。
計(jì)算層:在這個(gè)計(jì)算層內(nèi),淘寶采用的是Hadoop集群,這個(gè)集群,我們暫且稱之為云梯,是計(jì)算層的主要組成部分。在云梯上,系統(tǒng)每天會(huì)對(duì)數(shù)據(jù)產(chǎn)品進(jìn)行不同的MapReduce計(jì)算。
存儲(chǔ)層:在這一層,淘寶采用了兩個(gè)東西,一個(gè)使MyFox,一個(gè)是Prom。MyFox是基于MySQL的分布式關(guān)系型數(shù)據(jù)庫的集群,Prom是基于Hadoop Hbase技術(shù)的一個(gè)NoSQL的存儲(chǔ)集群。
查詢層:在這一層中,Glider是以HTTP協(xié)議對(duì)外提供restful方式的接口。數(shù)據(jù)產(chǎn)品通過一個(gè)唯一的URL來獲取到它想要的數(shù)據(jù)。同時(shí),數(shù)據(jù)查詢即是通過MyFox來查詢的。
最后一層是產(chǎn)品層,這個(gè)就不用解釋了。
存儲(chǔ)技術(shù)
大數(shù)據(jù)可以抽象的分為大數(shù)據(jù)存儲(chǔ)和大數(shù)據(jù)分析,這兩者的關(guān)系是:大數(shù)據(jù)存儲(chǔ)的目的是支撐大數(shù)據(jù)分析。到目前為止,還是兩種截然不同的計(jì)算機(jī)技術(shù)領(lǐng)域:大數(shù)據(jù)存儲(chǔ)致力于研發(fā)可以擴(kuò)展至PB甚至EB級(jí)別的數(shù)據(jù)存儲(chǔ)平臺(tái);大數(shù)據(jù)分析關(guān)注在最短時(shí)間內(nèi)處理大量不同類型的數(shù)據(jù)集。
提到存儲(chǔ),有一個(gè)著名的摩爾定律相信大家都聽過:18個(gè)月集成電路的復(fù)雜性就增加一倍。所以,存儲(chǔ)器的成本大約每18-24個(gè)月就下降一半。成本的不斷下降也造就了大數(shù)據(jù)的可存儲(chǔ)性。
比如,Google大約管理著超過50萬臺(tái)服務(wù)器和100萬塊硬盤,而且Google還在不斷的擴(kuò)大計(jì)算能力和存儲(chǔ)能力,其中很多的擴(kuò)展都是基于在廉價(jià)服務(wù)器和普通存儲(chǔ)硬盤的基礎(chǔ)上進(jìn)行的,這大大降低了其服務(wù)成本,因此可以將更多的資金投入到技術(shù)的研發(fā)當(dāng)中。
以Amazon舉例,Amazon S3 是一種面向 Internet 的存儲(chǔ)服務(wù)。該服務(wù)旨在讓開發(fā)人員能更輕松的進(jìn)行網(wǎng)絡(luò)規(guī)模計(jì)算。Amazon S3 提供一個(gè)簡(jiǎn)明的 Web 服務(wù)界面,用戶可通過它隨時(shí)在 Web 上的任何位置存儲(chǔ)和檢索的任意大小的數(shù)據(jù)。 此服務(wù)讓所有開發(fā)人員都能訪問同一個(gè)具備高擴(kuò)展性、可靠性、安全性和快速價(jià)廉的基礎(chǔ)設(shè)施,Amazon 用它來運(yùn)行其全球的網(wǎng)站網(wǎng)絡(luò)。再看看S3的設(shè)計(jì)指標(biāo):在特定年度內(nèi)為數(shù)據(jù)元提供 99.999999999% 的耐久性和 99.99% 的可用性,并能夠承受兩個(gè)設(shè)施中的數(shù)據(jù)同時(shí)丟失。
S3很成功也確實(shí)卓有成效,S3云的存儲(chǔ)對(duì)象已達(dá)到萬億級(jí)別,而且性能表現(xiàn)相當(dāng)良好。S3云已經(jīng)擁萬億跨地域存儲(chǔ)對(duì)象,同時(shí)AWS的對(duì)象執(zhí)行請(qǐng)求也達(dá)到百萬的峰值數(shù)量。目前全球范圍內(nèi)已經(jīng)有數(shù)以十萬計(jì)的企業(yè)在通過AWS運(yùn)行自己的全部或者部分日常業(yè)務(wù)。這些企業(yè)用戶遍布190多個(gè)國家,幾乎世界上的每個(gè)角落都有Amazon用戶的身影。
感知技術(shù)
大數(shù)據(jù)的采集和感知技術(shù)的發(fā)展是緊密聯(lián)系的。以傳感器技術(shù),指紋識(shí)別技術(shù),RFID技術(shù),坐標(biāo)定位技術(shù)等為基礎(chǔ)的感知能力提升同樣是物聯(lián)網(wǎng)發(fā)展的基石。全世界的工業(yè)設(shè)備、汽車、電表上有著無數(shù)的數(shù)碼傳感器,隨時(shí)測(cè)量和傳遞著有關(guān)位置、運(yùn)動(dòng)、震動(dòng)、溫度、濕度乃至空氣中化學(xué)物質(zhì)的變化,都會(huì)產(chǎn)生海量的數(shù)據(jù)信息。
而隨著智能手機(jī)的普及,感知技術(shù)可謂迎來了發(fā)展的高峰期,除了地理位置信息被廣泛的應(yīng)用外,一些新的感知手段也開始登上舞臺(tái),比如,最新的”iPhone 5S”在home鍵內(nèi)嵌指紋傳感器,新型手機(jī)可通過呼氣直接檢測(cè)燃燒脂肪量,用于手機(jī)的嗅覺傳感器面世可以監(jiān)測(cè)從空氣污染到危險(xiǎn)的化學(xué)藥品,微軟正在研發(fā)可感知用戶當(dāng)前心情智能手機(jī)技術(shù),谷歌眼鏡InSight新技術(shù)可通過衣著進(jìn)行人物識(shí)別。
除此之外,還有很多與感知相關(guān)的技術(shù)革新讓我們耳目一新:比如,牙齒傳感器實(shí)時(shí)監(jiān)控口腔活動(dòng)及飲食狀況,嬰兒穿戴設(shè)備可用大數(shù)據(jù)去養(yǎng)育寶寶,Intel正研發(fā)3D筆記本攝像頭可追蹤眼球讀懂情緒,日本公司開發(fā)新型可監(jiān)控用戶心率的紡織材料,業(yè)界正在嘗試將生物測(cè)定技術(shù)引入支付領(lǐng)域等。
其實(shí),這些感知被逐漸捕獲的過程就是就世界被數(shù)據(jù)化的過程,一旦世界被完全數(shù)據(jù)化了,那么世界的本質(zhì)也就是信息了。
就像一句名言所說,“人類以前延續(xù)的是文明,現(xiàn)在傳承的是信息?!?/span>
大數(shù)據(jù)的實(shí)踐
互聯(lián)網(wǎng)的大數(shù)據(jù)
互聯(lián)網(wǎng)上的數(shù)據(jù)每年增長(zhǎng)50%,每?jī)赡瓯銓⒎环?,而目前世界?0%以上的數(shù)據(jù)是最近幾年才產(chǎn)生的。據(jù)IDC預(yù)測(cè),到2020年全球?qū)⒖偣矒碛?5ZB的數(shù)據(jù)量?;ヂ?lián)網(wǎng)是大數(shù)據(jù)發(fā)展的前哨陣地,隨著WEB2.0時(shí)代的發(fā)展,人們似乎都習(xí)慣了將自己的生活通過網(wǎng)絡(luò)進(jìn)行數(shù)據(jù)化,方便分享以及記錄并回憶。
互聯(lián)網(wǎng)上的大數(shù)據(jù)很難清晰的界定分類界限,我們先看看BAT的大數(shù)據(jù):
百度擁有兩種類型的大數(shù)據(jù):用戶搜索表征的需求數(shù)據(jù);爬蟲和阿拉丁獲取的公共web數(shù)據(jù)。搜索巨頭百度圍繞數(shù)據(jù)而生。它對(duì)網(wǎng)頁數(shù)據(jù)的爬取、網(wǎng)頁內(nèi)容的組織和解析,通過語義分析對(duì)搜索需求的精準(zhǔn)理解進(jìn)而從海量數(shù)據(jù)中找準(zhǔn)結(jié)果,以及精準(zhǔn)的搜索引擎關(guān)鍵字廣告,實(shí)質(zhì)上就是一個(gè)數(shù)據(jù)的獲取、組織、分析和挖掘的過程。搜索引擎在大數(shù)據(jù)時(shí)代面臨的挑戰(zhàn)有:更多的暗網(wǎng)數(shù)據(jù);更多的WEB化但是沒有結(jié)構(gòu)化的數(shù)據(jù);更多的WEB化、結(jié)構(gòu)化但是封閉的數(shù)據(jù)。
阿里巴巴擁有交易數(shù)據(jù)和信用數(shù)據(jù)。這兩種數(shù)據(jù)更容易變現(xiàn),挖掘出商業(yè)價(jià)值。除此之外阿里巴巴還通過投資等方式掌握了部分社交數(shù)據(jù)、移動(dòng)數(shù)據(jù)。如微博和高德。
騰訊擁有用戶關(guān)系數(shù)據(jù)和基于此產(chǎn)生的社交數(shù)據(jù)。這些數(shù)據(jù)可以分析人們的生活和行為,從里面挖掘出政治、社會(huì)、文化、商業(yè)、健康等領(lǐng)域的信息,甚至預(yù)測(cè)未來。
在信息技術(shù)更為發(fā)達(dá)的美國,除了行業(yè)知名的類似Google,F(xiàn)acebook外,已經(jīng)涌現(xiàn)了很多大數(shù)據(jù)類型的公司,它們專門經(jīng)營數(shù)據(jù)產(chǎn)品,比如:
Metamarkets:這家公司對(duì)Twitter、支付、簽到和一些與互聯(lián)網(wǎng)相關(guān)的問題進(jìn)行了分析,為客戶提供了很好的數(shù)據(jù)分析支持。
Tableau:他們的精力主要集中于將海量數(shù)據(jù)以可視化的方式展現(xiàn)出來。Tableau為數(shù)字媒體提供了一個(gè)新的展示數(shù)據(jù)的方式。他們提供了一個(gè)免費(fèi)工具,任何人在沒有編程知識(shí)背景的情況下都能制造出數(shù)據(jù)專用圖表。這個(gè)軟件還能對(duì)數(shù)據(jù)進(jìn)行分析,并提供有價(jià)值的建議。
ParAccel:他們向美國執(zhí)法機(jī)構(gòu)提供了數(shù)據(jù)分析,比如對(duì)15000個(gè)有犯罪前科的人進(jìn)行跟蹤,從而向執(zhí)法機(jī)構(gòu)提供了參考性較高的犯罪預(yù)測(cè)。他們是犯罪的預(yù)言者。
QlikTech:QlikTech旗下的Qlikview是一個(gè)商業(yè)智能領(lǐng)域的自主服務(wù)工具,能夠應(yīng)用于科學(xué)研究和藝術(shù)等領(lǐng)域。為了幫助開發(fā)者對(duì)這些數(shù)據(jù)進(jìn)行分析,QlikTech提供了對(duì)原始數(shù)據(jù)進(jìn)行可視化處理等功能的工具。
GoodData:GoodData希望幫助客戶從數(shù)據(jù)中挖掘財(cái)富。這家創(chuàng)業(yè)公司主要面向商業(yè)用戶和IT企業(yè)高管,提供數(shù)據(jù)存儲(chǔ)、性能報(bào)告、數(shù)據(jù)分析等工具。
TellApart:TellApart和電商公司進(jìn)行合作,他們會(huì)根據(jù)用戶的瀏覽行為等數(shù)據(jù)進(jìn)行分析,通過鎖定潛在買家方式提高電商企業(yè)的收入。
DataSift:DataSift主要收集并分析社交網(wǎng)絡(luò)媒體上的數(shù)據(jù),并幫助品牌公司掌握突發(fā)新聞的輿論點(diǎn),并制定有針對(duì)性的營銷方案。這家公司還和Twitter有合作協(xié)議,使得自己變成了行業(yè)中為數(shù)不多可以分析早期tweet的創(chuàng)業(yè)公司。
Datahero:公司的目標(biāo)是將復(fù)雜的數(shù)據(jù)變得更加簡(jiǎn)單明了,方便普通人去理解和想象。
舉了很多例子,這里簡(jiǎn)要?dú)w納一下,在互聯(lián)網(wǎng)大數(shù)據(jù)的典型代表性包括:
用戶行為數(shù)據(jù)(精準(zhǔn)廣告投放、內(nèi)容推薦、行為習(xí)慣和喜好分析、產(chǎn)品優(yōu)化等)
用戶消費(fèi)數(shù)據(jù)(精準(zhǔn)營銷、信用記錄分析、活動(dòng)促銷、理財(cái)?shù)?
用戶地理位置數(shù)據(jù)(O2O推廣,商家推薦,交友推薦等)
互聯(lián)網(wǎng)金融數(shù)據(jù)(P2P,小額貸款,支付,信用,供應(yīng)鏈金融等)
用戶社交等UGC數(shù)據(jù)(趨勢(shì)分析、流行元素分析、受歡迎程度分析、輿論監(jiān)控分析、社會(huì)問題分析等)
政府的大數(shù)據(jù)
近期,奧巴馬政府宣布投資2億美元拉動(dòng)大數(shù)據(jù)相關(guān)產(chǎn)業(yè)發(fā)展,將“大數(shù)據(jù)戰(zhàn)略”上升為國家意志。奧巴馬政府將數(shù)據(jù)定義為“未來的新石油”,并表示一個(gè)國家擁有數(shù)據(jù)的規(guī)模、活性及解釋運(yùn)用的能力將成為綜合國力的重要組成部分,未來,對(duì)數(shù)據(jù)的占有和控制甚至將成為陸權(quán)、海權(quán)、空權(quán)之外的另一種國家核心資產(chǎn)。
在國內(nèi),政府各個(gè)部門都握有構(gòu)成社會(huì)基礎(chǔ)的原始數(shù)據(jù),比如,氣象數(shù)據(jù),金融數(shù)據(jù),信用數(shù)據(jù),電力數(shù)據(jù),煤氣數(shù)據(jù),自來水?dāng)?shù)據(jù),道路交通數(shù)據(jù),客運(yùn)數(shù)據(jù),安全刑事案件數(shù)據(jù),住房數(shù)據(jù),海關(guān)數(shù)據(jù),出入境數(shù)據(jù),旅游數(shù)據(jù),醫(yī)療數(shù)據(jù),教育數(shù)據(jù),環(huán)保數(shù)據(jù)等等。這些數(shù)據(jù)在每個(gè)政府部門里面看起來是單一的,靜態(tài)的。但是,如果政府可以將這些數(shù)據(jù)關(guān)聯(lián)起來,并對(duì)這些數(shù)據(jù)進(jìn)行有效的關(guān)聯(lián)分析和統(tǒng)一管理,這些數(shù)據(jù)必定將獲得新生,其價(jià)值是無法估量的。
具體來說,現(xiàn)在城市都在走向智能和智慧,比如,智能電網(wǎng)、智慧交通、智慧醫(yī)療、智慧環(huán)保、智慧城市,這些都依托于大數(shù)據(jù),可以說大數(shù)據(jù)是智慧的核心能源。從國內(nèi)整體投資規(guī)模來看,到2012年底全國開建智慧城市的城市數(shù)超過180個(gè),通信網(wǎng)絡(luò)和數(shù)據(jù)平臺(tái)等基礎(chǔ)設(shè)施建設(shè)投資規(guī)模接近5000億元?!笆濉逼陂g智慧城市建設(shè)拉動(dòng)的設(shè)備投資規(guī)模將達(dá)1萬億元人民幣。大數(shù)據(jù)為智慧城市的各個(gè)領(lǐng)域提供決策支持。在城市規(guī)劃方面,通過對(duì)城市地理、氣象等自然信息和經(jīng)濟(jì)、社會(huì)、文化、人口等人文社會(huì)信息的挖掘,可以為城市規(guī)劃提供決策,強(qiáng)化城市管理服務(wù)的科學(xué)性和前瞻性。在交通管理方面,通過對(duì)道路交通信息的實(shí)時(shí)挖掘,能有效緩解交通擁堵,并快速響應(yīng)突發(fā)狀況,為城市交通的良性運(yùn)轉(zhuǎn)提供科學(xué)的決策依據(jù)。在輿情監(jiān)控方面,通過網(wǎng)絡(luò)關(guān)鍵詞搜索及語義智能分析,能提高輿情分析的及時(shí)性、全面性,全面掌握社情民意,提高公共服務(wù)能力,應(yīng)對(duì)網(wǎng)絡(luò)突發(fā)的公共事件,打擊違法犯罪。在安防與防災(zāi)領(lǐng)域,通過大數(shù)據(jù)的挖掘,可以及時(shí)發(fā)現(xiàn)人為或自然災(zāi)害、恐怖事件,提高應(yīng)急處理能力和安全防范能力。
另外,作為國家的管理者,政府應(yīng)該有勇氣將手中的數(shù)據(jù)逐步開放,供給更多有能力的機(jī)構(gòu)組織或個(gè)人來分析并加以利用,以加速造福人類。比如,美國政府就籌建了一個(gè)data.gov網(wǎng)站,這是奧巴馬任期內(nèi)的一個(gè)重要舉措:要求政府公開透明,而核心就是實(shí)現(xiàn)政府機(jī)構(gòu)的數(shù)據(jù)公開。截止目前,已經(jīng)開放了有91054 個(gè)datasets;349citizen-developed apps;137 mobile apps;175 agencies and subagencies;87 galleries;295 Government APIs。
企業(yè)的大數(shù)據(jù)
企業(yè)的CXO們最關(guān)注的還是報(bào)表曲線的背后能有怎樣的信息,他該做怎樣的決策,其實(shí)這一切都需要通過數(shù)據(jù)來傳遞和支撐。在理想的世界中,大數(shù)據(jù)是巨大的杠桿,可以改變公司的影響力,帶來競(jìng)爭(zhēng)差異、節(jié)省金錢、增加利潤、愉悅買家、獎(jiǎng)賞忠誠用戶、將潛在客戶轉(zhuǎn)化為客戶、增加吸引力、打敗競(jìng)爭(zhēng)對(duì)手、開拓用戶群并創(chuàng)造市場(chǎng)。
那么,哪些傳統(tǒng)企業(yè)最需要大數(shù)據(jù)服務(wù)呢?拋磚引玉,先舉幾個(gè)例子:1) 對(duì)大量消費(fèi)者提供產(chǎn)品或服務(wù)的企業(yè)(精準(zhǔn)營銷);2) 做小而美模式的中長(zhǎng)尾企業(yè)(服務(wù)轉(zhuǎn)型);3) 面臨互聯(lián)網(wǎng)壓力之下必須轉(zhuǎn)型的傳統(tǒng)企業(yè)(生死存亡)。
對(duì)于企業(yè)的大數(shù)據(jù),還有一種預(yù)測(cè):隨著數(shù)據(jù)逐漸成為企業(yè)的一種資產(chǎn),數(shù)據(jù)產(chǎn)業(yè)會(huì)向傳統(tǒng)企業(yè)的供應(yīng)鏈模式發(fā)展,最終形成“數(shù)據(jù)供應(yīng)鏈”。這里尤其有兩個(gè)明顯的現(xiàn)象:1) 外部數(shù)據(jù)的重要性日益超過內(nèi)部數(shù)據(jù)。在互聯(lián)互通的互聯(lián)網(wǎng)時(shí)代,單一企業(yè)的內(nèi)部數(shù)據(jù)與整個(gè)互聯(lián)網(wǎng)數(shù)據(jù)比較起來只是滄海一粟;2) 能提供包括數(shù)據(jù)供應(yīng)、數(shù)據(jù)整合與加工、數(shù)據(jù)應(yīng)用等多環(huán)節(jié)服務(wù)的公司會(huì)有明顯的綜合競(jìng)爭(zhēng)優(yōu)勢(shì)。
對(duì)于提供大數(shù)據(jù)服務(wù)的企業(yè)來說,他們等待的是合作機(jī)會(huì),就像微軟史密斯說的:“給我提供一些數(shù)據(jù),我就能做一些改變。如果給我提供所有數(shù)據(jù),我就能拯救世界?!?/span>
然而,一直做企業(yè)服務(wù)的巨頭將優(yōu)勢(shì)不在,不得不眼看新興互聯(lián)網(wǎng)企業(yè)加入戰(zhàn)局,開啟殘酷競(jìng)爭(zhēng)模式。為何會(huì)出現(xiàn)這種局面?從 IT 產(chǎn)業(yè)的發(fā)展來看,第一代 IT 巨頭大多是 ToB 的,比如 IBM、Microsoft、Oracle、SAP、HP這類傳統(tǒng) IT 企業(yè);第二代 IT 巨頭大多是ToC 的,比如 Yahoo、Google、Amazon、Facebook 這類互聯(lián)網(wǎng)企業(yè)。大數(shù)據(jù)到來前,這兩類公司彼此之間基本是井水不犯河水;但在當(dāng)前這個(gè)大數(shù)據(jù)時(shí)代,這兩類公司已經(jīng)開始直接競(jìng)爭(zhēng)。比如 Amazon 已經(jīng)開始提供云模式的數(shù)據(jù)倉庫服務(wù),直接搶占 IBM、Oracle 的市場(chǎng)。這個(gè)現(xiàn)象出現(xiàn)的本質(zhì)原因是:在互聯(lián)網(wǎng)巨頭的帶動(dòng)下,傳統(tǒng) IT 巨頭的客戶普遍開始從事電子商務(wù)業(yè)務(wù),正是由于客戶進(jìn)入了互聯(lián)網(wǎng),所以傳統(tǒng) IT 巨頭們不情愿地被拖入了互聯(lián)網(wǎng)領(lǐng)域。如果他們不進(jìn)入互聯(lián)網(wǎng),他們業(yè)務(wù)必將萎縮。在進(jìn)入互聯(lián)網(wǎng)后,他們又必須將云技術(shù),大數(shù)據(jù)等互聯(lián)網(wǎng)最具有優(yōu)勢(shì)的技術(shù)通過封裝打造成自己的產(chǎn)品再提供給企業(yè)。
以IBM舉例,上一個(gè)十年,他們拋棄了PC,成功轉(zhuǎn)向了軟件和服務(wù),而這次將遠(yuǎn)離服務(wù)與咨詢,更多地專注于因大數(shù)據(jù)分析軟件而帶來的全新業(yè)務(wù)增長(zhǎng)點(diǎn)。IBM執(zhí)行總裁羅睿蘭認(rèn)為,“數(shù)據(jù)將成為一切行業(yè)當(dāng)中決定勝負(fù)的根本因素,最終數(shù)據(jù)將成為人類至關(guān)重要的自然資源?!盜BM積極的提出了“大數(shù)據(jù)平臺(tái)”架構(gòu)。該平臺(tái)的四大核心能力包括Hadoop系統(tǒng)、流計(jì)算(StreamComputing)、數(shù)據(jù)倉庫(Data Warehouse)和信息整合與治理(Information Integration and Governance)
IBM大數(shù)據(jù)
另外一家亟待通過云和大數(shù)據(jù)戰(zhàn)略而復(fù)蘇的巨頭公司HP也推出了自己的產(chǎn)品:HAVEn,一個(gè)可以自由擴(kuò)展伸縮的大數(shù)據(jù)解決方案。這個(gè)解決方案由HP Autonomy、HP Vertica、HP ArcSight 和惠普運(yùn)營管理(HP OperationsManagement)四大技術(shù)組成。還支持Hadoop這樣通用的技術(shù)。HAVEn不是一個(gè)軟件平臺(tái),而是一個(gè)生態(tài)環(huán)境。四大組成部分滿足不同的應(yīng)用場(chǎng)景需要,Autonomy解決音視頻識(shí)別的重要解決方案;Vertica解決數(shù)據(jù)處理的速度和效率的方案;ArcSight解決機(jī)器的記錄信息處理,幫助企業(yè)獲得更高安全級(jí)別的管理;運(yùn)營管理解決的不僅僅是外部數(shù)據(jù)的處理,而是包括了IT基礎(chǔ)設(shè)施產(chǎn)生的數(shù)據(jù)。
個(gè)人的大數(shù)據(jù)
個(gè)人的大數(shù)據(jù)這個(gè)概念很少有人提及,簡(jiǎn)單來說,就是與個(gè)人相關(guān)聯(lián)的各種有價(jià)值數(shù)據(jù)信息被有效采集后,可由本人授權(quán)提供第三方進(jìn)行處理和使用,并獲得第三方提供的數(shù)據(jù)服務(wù)。
舉個(gè)例子來說明會(huì)更清晰一些:
未來,每個(gè)用戶可以在互聯(lián)網(wǎng)上注冊(cè)個(gè)人的數(shù)據(jù)中心,以存儲(chǔ)個(gè)人的大數(shù)據(jù)信息。用戶可確定哪些個(gè)人數(shù)據(jù)可被采集,并通過可穿戴設(shè)備或植入芯片等感知技術(shù)來采集捕獲個(gè)人的大數(shù)據(jù),比如,牙齒監(jiān)控?cái)?shù)據(jù),心率數(shù)據(jù),體溫?cái)?shù)據(jù),視力數(shù)據(jù),記憶能力,地理位置信息,社會(huì)關(guān)系數(shù)據(jù),運(yùn)動(dòng)數(shù)據(jù),飲食數(shù)據(jù),購物數(shù)據(jù)等等。用戶可以將其中的牙齒監(jiān)測(cè)數(shù)據(jù)授權(quán)給XX牙科診所使用,由他們監(jiān)控和使用這些數(shù)據(jù),進(jìn)而為用戶制定有效的牙齒防治和維護(hù)計(jì)劃;也可以將個(gè)人的運(yùn)動(dòng)數(shù)據(jù)授權(quán)提供給某運(yùn)動(dòng)健身機(jī)構(gòu),由他們監(jiān)測(cè)自己的身體運(yùn)動(dòng)機(jī)能,并有針對(duì)的制定和調(diào)整個(gè)人的運(yùn)動(dòng)計(jì)劃;還可以將個(gè)人的消費(fèi)數(shù)據(jù)授權(quán)給金融理財(cái)機(jī)構(gòu),由他們幫你制定合理的理財(cái)計(jì)劃并對(duì)收益進(jìn)行預(yù)測(cè)。當(dāng)然,其中有一部分個(gè)人數(shù)據(jù)是無需個(gè)人授權(quán)即可提供給國家相關(guān)部門進(jìn)行實(shí)時(shí)監(jiān)控的,比如罪案預(yù)防監(jiān)控中心可以實(shí)時(shí)的監(jiān)控本地區(qū)每個(gè)人的情緒和心理狀態(tài),以預(yù)防自殺和犯罪的發(fā)生。
以個(gè)人為中心的大數(shù)據(jù)有這么一些特性:
數(shù)據(jù)僅留存在個(gè)人中心,其它第三方機(jī)構(gòu)只被授權(quán)使用(數(shù)據(jù)有一定的使用期限),且必須接受用后即焚的監(jiān)管。
采集個(gè)人數(shù)據(jù)應(yīng)該明確分類,除了國家立法明確要求接受監(jiān)控的數(shù)據(jù)外,其它類型數(shù)據(jù)都由用戶自己決定是否被采集。
數(shù)據(jù)的使用將只能由用戶進(jìn)行授權(quán),數(shù)據(jù)中心可幫助監(jiān)控個(gè)人數(shù)據(jù)的整個(gè)生命周期。
展望過于美好,也許實(shí)現(xiàn)個(gè)人數(shù)據(jù)中心將遙遙無期,也許這還不是解決個(gè)人數(shù)據(jù)隱私的最好方法,也許業(yè)界對(duì)大數(shù)據(jù)的無限渴求會(huì)阻止數(shù)據(jù)個(gè)人中心的實(shí)現(xiàn),但是隨著數(shù)據(jù)越來越多,在缺乏監(jiān)管之后,必然會(huì)有一場(chǎng)激烈的博弈:到底是數(shù)據(jù)重要還是隱私重要;是以商業(yè)為中心還是以個(gè)人為中心。
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
LSTM 模型輸入長(zhǎng)度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長(zhǎng)序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報(bào)考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代浪潮下,CDA 數(shù)據(jù)分析師認(rèn)證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計(jì)的實(shí)用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強(qiáng)大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實(shí)施重大更新。 此次更新旨在確保認(rèn) ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價(jià)值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡(jiǎn)稱 BI)深度融合的時(shí)代,BI ...
2025-07-10SQL 在預(yù)測(cè)分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢(shì)預(yù)判? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代,預(yù)測(cè)分析作為挖掘數(shù)據(jù)潛在價(jià)值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價(jià)值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點(diǎn),而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報(bào)考到取證的全攻略? 在數(shù)字經(jīng)濟(jì)蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭(zhēng)搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢(shì)性檢驗(yàn):捕捉數(shù)據(jù)背后的時(shí)間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢(shì)性檢驗(yàn)如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時(shí)間維度的精準(zhǔn)切片? ? 在數(shù)據(jù)的世界里,時(shí)間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準(zhǔn) ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實(shí)戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認(rèn)證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗(yàn):數(shù)據(jù)趨勢(shì)與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準(zhǔn)確捕捉數(shù)據(jù)的趨勢(shì)變化以及識(shí)別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認(rèn)證作為國內(nèi)權(quán)威的數(shù)據(jù)分析能力認(rèn)證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對(duì)策略? 長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨(dú)特的門控機(jī)制,在 ...
2025-07-07統(tǒng)計(jì)學(xué)方法在市場(chǎng)調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場(chǎng)調(diào)研是企業(yè)洞察市場(chǎng)動(dòng)態(tài)、了解消費(fèi)者需求的重要途徑,而統(tǒng)計(jì)學(xué)方法則是市場(chǎng)調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當(dāng)下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動(dòng)力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準(zhǔn)確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動(dòng)力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價(jià)值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03