
一篇文章透徹解讀聚類分析及案例實(shí)操(二)
4 SAS聚類分析案例
1 問題背景
考慮下面案例,一個(gè)棒球管理員希望根據(jù)隊(duì)員們的興趣相似性將他們進(jìn)行分組。顯然,在該例子中,沒有響應(yīng)變量。管理者希望能夠方便地識(shí)別出隊(duì)員的分組情況。同時(shí),他也希望了解不同組之間隊(duì)員之間的差異性。
該案例的數(shù)據(jù)集是在SAMPSIO庫中的DMABASE數(shù)據(jù)集。下面是數(shù)據(jù)集中的主要的變量的描述信息:
在這個(gè)案例中,設(shè)置TEAM,POSITION,LEAGUE,DIVISION和SALARY變量的模型角色為rejected,設(shè)置SALARY變量的 模型角色為rejected是由于它的信息已經(jīng)存儲(chǔ)在LOGSALAR中。在聚類分析和自組織映射圖中是不需要目標(biāo)變量的。如果需要在一個(gè)目標(biāo)變量上識(shí)別 分組,可以考慮預(yù)測(cè)建模技術(shù)或者定義一個(gè)分類目標(biāo)。
2 聚類方法概述
聚類分析經(jīng)常和有監(jiān)督分類相混淆,有監(jiān)督分類是為定義的分類響應(yīng)變量預(yù)測(cè)分組或者類別關(guān)系。而聚類分析,從另一方面考慮,它是一種無監(jiān)督分類技術(shù)。 它能夠在所有輸入變量的基礎(chǔ)上識(shí)別出數(shù)據(jù)集中的分組和類別信息。這些組、簇,賦予不同的數(shù)字。然而,聚類數(shù)目不能用來評(píng)價(jià)類別之間的近似關(guān)系。自組織映射 圖嘗試創(chuàng)建聚類,并且在一個(gè)圖上用圖形化的方式繪制出聚類信息,在此處我們并沒有考慮。
1) 建立初始數(shù)據(jù)流
2) 設(shè)置輸入數(shù)據(jù)源結(jié)點(diǎn)
打開輸入數(shù)據(jù)源結(jié)點(diǎn)
從SAMPSIO庫中選擇DMABASE數(shù)據(jù)集
設(shè)置NAME變量的模型角色為id,TEAM,POSIOTION,LEAGUE,DIVISION和SALARY變量的模型角色為rejected
探索變量的分布和描述性統(tǒng)計(jì)信息
選擇區(qū)間變量選項(xiàng)卡,可以觀察到只有LOGSALAR和SALARY變量有缺失值。選擇類別變量選項(xiàng)卡,可以觀察到?jīng)]有缺失值。在本例中,沒有涉及到任何類別變量。
關(guān)閉輸入數(shù)據(jù)源結(jié)點(diǎn),并保存信息。
3) 設(shè)置替代結(jié)點(diǎn)
雖然并不是總是要處理缺失值,但是有時(shí)候缺失值的數(shù)量會(huì)影響聚類結(jié)點(diǎn)產(chǎn)生的聚類解決方案。為了產(chǎn)生初始聚類,聚類結(jié)點(diǎn)往往需要一些完整的觀測(cè)值。當(dāng)缺失值太多的時(shí)候,需要用替代結(jié)點(diǎn)來處理。雖然這并不是必須的,但是在本例中使用到了。
4) 設(shè)置聚類結(jié)點(diǎn)
打開聚類結(jié)點(diǎn),激活變量選項(xiàng)卡。K-means聚類對(duì)輸入數(shù)據(jù)是敏感的。一般情況下,考慮對(duì)數(shù)據(jù)集進(jìn)行標(biāo)準(zhǔn)化處理。
在變量選項(xiàng)卡,選擇標(biāo)準(zhǔn)偏差單選框
選擇聚類選項(xiàng)卡
觀察到默認(rèn)選擇聚類數(shù)目的方法是自動(dòng)的
關(guān)閉聚類結(jié)點(diǎn)
5) 聚類結(jié)果
在聚類結(jié)點(diǎn)處運(yùn)行流程圖,查看聚類結(jié)果。
6) 限定聚類數(shù)目
打開聚類結(jié)點(diǎn)
選擇聚類選項(xiàng)卡
在聚類數(shù)目選擇部分,點(diǎn)擊選擇標(biāo)準(zhǔn)按鈕
輸入最大聚類數(shù)目為10
點(diǎn)擊ok,關(guān)閉聚類結(jié)點(diǎn)
7)結(jié)果解釋
我們可以定義每個(gè)類別的信息,結(jié)合背景識(shí)別每個(gè)類型的特征。選擇箭頭按鈕,
選擇三維聚類圖的某一類別,
在工具欄選擇刷新輸入均值圖圖標(biāo),
點(diǎn)擊該圖標(biāo),可以查看該類別的規(guī)范化均值圖
同理,可以根據(jù)該方法對(duì)其他類別進(jìn)行解釋。
8)運(yùn)用Insight結(jié)點(diǎn)
Insight結(jié)點(diǎn)可以用來比較不同屬性之間的異常。打開insight結(jié)點(diǎn),選擇整個(gè)數(shù)據(jù)集,關(guān)閉結(jié)點(diǎn)。
從insight結(jié)點(diǎn)處運(yùn)行。
變量_SEGMNT_標(biāo)識(shí)類別,distance標(biāo)識(shí)觀測(cè)值到所在類別中心的距離。運(yùn)用insight窗口的analyze工具評(píng)估和比較聚類結(jié)果。
首先把_SEGMNT_的度量方式從interval轉(zhuǎn)換成nominal。
以R基礎(chǔ)包自帶的鳶尾花(Iris)數(shù)據(jù)進(jìn)行聚類分析。分析代碼如下:
###### 代碼清單 #######
data(iris); attach(iris)
iris.hc <- hclust( dist(iris[,1:4]))
# plot( iris.hc, hang = -1)
plclust( iris.hc, labels = FALSE, hang = -1)
re <- rect.hclust(iris.hc, k = 3)
iris.id <- cutree(iris.hc, 3)
table(iris.id, Species)
###### 運(yùn)行結(jié)果 #######
> table(iris.id,Species)
Species
iris.id setosa versicolor virginica
1 50 0 0
2 0 23 49
3 0 27 1
聚類分析生成的圖形如下:
結(jié)果表明,函數(shù)cuttree()將數(shù)據(jù)iris分類結(jié)果iris.hc編為三組分別以1,2, 3表示,保存在iris.id中。將iris.id與iris中Species作比較發(fā)現(xiàn):1應(yīng)該是setosa類,2應(yīng)該是virginica類(因?yàn)? virginica的個(gè)數(shù)明顯多于versicolor),3是versicolor。
仍以R基礎(chǔ)包自帶的鳶尾花(Iris)數(shù)據(jù)進(jìn)行K-均值聚類分析,分析代碼如下:
###### 代碼清單 #######
library(fpc)
data(iris)
df<-iris[,c(1:4)]
set.seed(252964) # 設(shè)置隨機(jī)值,為了得到一致結(jié)果。
(kmeans <- kmeans(na.omit(df), 3)) # 顯示K-均值聚類結(jié)果
plotcluster(na.omit(df), kmeans$cluster) # 生成聚類圖
生成的圖如下:
Python篇
Python運(yùn)行條件:
1.Python運(yùn)行環(huán)境與編輯環(huán)境;
2.Matplotlib.pyplot圖形庫,可用于快速繪制2D圖表,與matlab中的plot命令類似,而且用法也基本相同。
# coding=utf-8
##
作者:Chan
程序:kmeans算法
##
import matplotlib.pyplot as plt
import math
import numpy
import random
#dotOringalNum為各個(gè)分類最初的大小
dotOringalNum=100
#dotAddNum最后測(cè)試點(diǎn)的數(shù)目
dotAddNum=1000
fig = plt.figure()
ax = fig.add_subplot(111)
sets=
colors=[‘b’,’g’,’r’,’y’]
#第一個(gè)分類,顏色為藍(lán)色,在左下角
a=
txx=0.0
tyy=0.0
for i in range(0,dotOringalNum):
tx=float(random.randint(1000,3000))/100
ty=float(random.randint(1000,3000))/100
a.append([tx,ty])
txx+=tx
tyy+=ty
#ax.plot([tx],[ty],color=colors[0],linestyle=”,marker=’.’)
#a的第一個(gè)元素為a的各個(gè)元素xy值之合
a.insert(0,[txx,tyy])
sets.append(a)
#第二個(gè)分類,顏色為綠色,在右上角
b=
txx=0.0
tyy=0.0
for i in range(0,dotOringalNum):
tx=float(random.randint(4000,6000))/100
ty=float(random.randint(4000,6000))/100
b.append([tx,ty])
txx+=tx
tyy+=ty
#ax.plot([tx],[ty],color=colors[1],linestyle=”,marker=’.’)
b.insert(0,[txx,tyy])
sets.append(b)
#第三個(gè)分類,顏色為紅色,在左上角
c=
txx=0.0
tyy=0.0
for i in range(0,dotOringalNum):
tx=float(random.randint(1000,3000))/100
ty=float(random.randint(4000,6000))/100
c.append([tx,ty])
txx+=tx
tyy+=ty
#ax.plot([tx],[ty],color=colors[2],linestyle=”,marker=’.’)
c.insert(0,[txx,tyy])
sets.append(c)
#第四個(gè)分類,顏色為黃色,在右下角
d=
txx=0
tyy=0
for i in range(0,dotOringalNum):
tx=float(random.randint(4000,6000))/100
ty=float(random.randint(1000,3000))/100
d.append([tx,ty])
txx+=tx
tyy+=ty
#ax.plot([tx],[ty],color=colors[3],linestyle=”,marker=’.’)
d.insert(0,[txx,tyy])
sets.append(d)
#測(cè)試
for i in range(0,dotAddNum):
tx=float(random.randint(0,7000))/100
ty=float(random.randint(0,7000))/100
dist=9000.0
setBelong=0
for j in range(0,4):
length=len(sets[j])-1
centX=sets[j][0][0]/length
centY=sets[j][0][1]/length
if (centX-tx)*(centX-tx)+(centY-ty)*(centY-ty)
運(yùn)行效果:
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
LSTM 模型輸入長(zhǎng)度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長(zhǎng)序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報(bào)考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代浪潮下,CDA 數(shù)據(jù)分析師認(rèn)證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計(jì)的實(shí)用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強(qiáng)大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠(chéng)摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實(shí)施重大更新。 此次更新旨在確保認(rèn) ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價(jià)值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡(jiǎn)稱 BI)深度融合的時(shí)代,BI ...
2025-07-10SQL 在預(yù)測(cè)分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢(shì)預(yù)判? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代,預(yù)測(cè)分析作為挖掘數(shù)據(jù)潛在價(jià)值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價(jià)值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點(diǎn),而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報(bào)考到取證的全攻略? 在數(shù)字經(jīng)濟(jì)蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭(zhēng)搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢(shì)性檢驗(yàn):捕捉數(shù)據(jù)背后的時(shí)間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢(shì)性檢驗(yàn)如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時(shí)間維度的精準(zhǔn)切片? ? 在數(shù)據(jù)的世界里,時(shí)間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準(zhǔn) ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實(shí)戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認(rèn)證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗(yàn):數(shù)據(jù)趨勢(shì)與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準(zhǔn)確捕捉數(shù)據(jù)的趨勢(shì)變化以及識(shí)別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認(rèn)證作為國(guó)內(nèi)權(quán)威的數(shù)據(jù)分析能力認(rèn)證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對(duì)策略? 長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨(dú)特的門控機(jī)制,在 ...
2025-07-07統(tǒng)計(jì)學(xué)方法在市場(chǎng)調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場(chǎng)調(diào)研是企業(yè)洞察市場(chǎng)動(dòng)態(tài)、了解消費(fèi)者需求的重要途徑,而統(tǒng)計(jì)學(xué)方法則是市場(chǎng)調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當(dāng)下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動(dòng)力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準(zhǔn)確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動(dòng)力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價(jià)值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03