
各種排序算法總結
排序算法是最基本最常用的算法,不同的排序算法在不同的場景或應用中會有不同的表現(xiàn),我們需要對各種排序算法熟練才能將它們應用到實際當中,才能更好地發(fā)揮它們的優(yōu)勢。今天,來總結下各種排序算法。
下面這個表格總結了各種排序算法的復雜度與穩(wěn)定性:
各種排序算法復雜度比較.png
冒泡排序
冒泡排序可謂是最經(jīng)典的排序算法了,它是基于比較的排序算法,時間復雜度為O(n^2),其優(yōu)點是實現(xiàn)簡單,n較小時性能較好。
算法原理
相鄰的數(shù)據(jù)進行兩兩比較,小數(shù)放在前面,大數(shù)放在后面,這樣一趟下來,最小的數(shù)就被排在了第一位,第二趟也是如此,如此類推,直到所有的數(shù)據(jù)排序完成
c++代碼實現(xiàn)
void bubble_sort(int arr[], int len)
{
for (int i = 0; i < len - 1; i++)
{
for (int j = len - 1; j >= i; j--)
{
if (arr[j] < arr[j - 1])
{
int temp = arr[j];
arr[j] = arr[j - 1];
arr[j - 1] = temp;
}
}
}
}
選擇排序
算法原理
先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再從剩余未排序元素中繼續(xù)尋找最?。ù螅┰?,然后放到已排序序列的末尾。以此類推,直到所有元素均排序完畢。
c++代碼實現(xiàn)
void select_sort(int arr[], int len)
{
for (int i = 0; i < len; i++)
{
int index = i;
for (int j = i + 1; j < len; j++)
{
if (arr[j] < arr[index])
index = j;
}
if (index != i)
{
int temp = arr[i];
arr[i] = arr[index];
arr[index] = temp;
}
}
}
插入排序
算法原理
將數(shù)據(jù)分為兩部分,有序部分與無序部分,一開始有序部分包含第1個元素,依次將無序的元素插入到有序部分,直到所有元素有序。插入排序又分為直接插入排序、二分插入排序、鏈表插入等,這里只討論直接插入排序。它是穩(wěn)定的排序算法,時間復雜度為O(n^2)
c++代碼實現(xiàn)
void insert_sort(int arr[], int len)
{
for (int i = 1; i < len; i ++)
{
int j = i - 1;
int k = arr[i];
while (j > -1 && k < arr[j] )
{
arr[j + 1] = arr[j];
j --;
}
arr[j + 1] = k;
}
}
快速排序
算法原理
快速排序是目前在實踐中非常高效的一種排序算法,它不是穩(wěn)定的排序算法,平均時間復雜度為O(nlogn),最差情況下復雜度為O(n^2)。它的基本思想是:通過一趟排序將要排序的數(shù)據(jù)分割成獨立的兩部分,其中一部分的所有數(shù)據(jù)都比另外一部分的所有數(shù)據(jù)都要小,然后再按此方法對這兩部分數(shù)據(jù)分別進行快速排序,整個排序過程可以遞歸進行,以此達到整個數(shù)據(jù)變成有序序列。
c++代碼實現(xiàn)
void quick_sort(int arr[], int left, int right)
{
if (left < right)
{
int i = left, j = right, target = arr[left];
while (i < j)
{
while (i < j && arr[j] > target)
j--;
if (i < j)
arr[i++] = arr[j];
while (i < j && arr[i] < target)
i++;
if (i < j)
arr[j] = arr[i];
}
arr[i] = target;
quick_sort(arr, left, i - 1);
quick_sort(arr, i + 1, right);
}
}
歸并排序
算法原理
歸并排序具體工作原理如下(假設序列共有n個元素):
將序列每相鄰兩個數(shù)字進行歸并操作(merge),形成floor(n/2)個序列,排序后每個序列包含兩個元素
將上述序列再次歸并,形成floor(n/4)個序列,每個序列包含四個元素
重復步驟2,直到所有元素排序完畢
歸并排序是穩(wěn)定的排序算法,其時間復雜度為O(nlogn),如果是使用鏈表的實現(xiàn)的話,空間復雜度可以達到O(1),但如果是使用數(shù)組來存儲數(shù)據(jù)的話,在歸并的過程中,需要臨時空間來存儲歸并好的數(shù)據(jù),所以空間復雜度為O(n)
c++代碼實現(xiàn)
void merge(int arr[], int temp_arr[], int start_index, int mid_index, int end_index)
{
int i = start_index, j = mid_index + 1;
int k = 0;
while (i < mid_index + 1 && j < end_index + 1)
{
if (arr[i] > arr[j])
temp_arr[k++] = arr[j++];
else
temp_arr[k++] = arr[i++];
}
while (i < mid_index + 1)
{
temp_arr[k++] = arr[i++];
}
while (j < end_index + 1)
temp_arr[k++] = arr[j++];
for (i = 0, j = start_index; j < end_index + 1; i ++, j ++)
arr[j] = temp_arr[i];
}
void merge_sort(int arr[], int temp_arr[], int start_index, int end_index)
{
if (start_index < end_index)
{
int mid_index = (start_index + end_index) / 2;
merge_sort(arr, temp_arr, start_index, mid_index);
merge_sort(arr, temp_arr, mid_index + 1, end_index);
merge(arr, temp_arr, start_index, mid_index, end_index);
}
}
堆排序
二叉堆是完全二叉樹或者近似完全二叉樹,滿足兩個特性
父結點的鍵值總是大于或等于(小于或等于)任何一個子節(jié)點的鍵值
每個結點的左子樹和右子樹都是一個二叉堆
當父結點的鍵值總是大于或等于任何一個子節(jié)點的鍵值時為最大堆。當父結點的鍵值總是小于或等于任何一個子節(jié)點的鍵值時為最小堆。一般二叉樹簡稱為堆。
堆的存儲
一般都是數(shù)組來存儲堆,i結點的父結點下標就為(i – 1) / 2。它的左右子結點下標分別為2 * i + 1和2 * i + 2。如第0個結點左右子結點下標分別為1和2。存儲結構如圖所示:
堆結構.png
堆排序原理
堆排序的時間復雜度為O(nlogn)
算法原理(以最大堆為例)
先將初始數(shù)據(jù)R[1..n]建成一個最大堆,此堆為初始的無序區(qū)
再將關鍵字最大的記錄R[1](即堆頂)和無序區(qū)的最后一個記錄R[n]交換,由此得到新的無序區(qū)R[1..n-1]和有序區(qū)R[n],且滿足R[1..n-1].keys≤R[n].key
由于交換后新的根R[1]可能違反堆性質,故應將當前無序區(qū)R[1..n-1]調整為堆。
重復2、3步驟,直到無序區(qū)只有一個元素為止。
c++代碼實現(xiàn)
/**
* 將數(shù)組arr構建大根堆
* @param arr 待調整的數(shù)組
* @param i 待調整的數(shù)組元素的下標
* @param len 數(shù)組的長度
*/
void heap_adjust(int arr[], int i, int len)
{
int child;
int temp;
for (; 2 * i + 1 < len; i = child)
{
child = 2 * i + 1; // 子結點的位置 = 2 * 父結點的位置 + 1
// 得到子結點中鍵值較大的結點
if (child < len - 1 && arr[child + 1] > arr[child])
child ++;
// 如果較大的子結點大于父結點那么把較大的子結點往上移動,替換它的父結點
if (arr[i] < arr[child])
{
temp = arr[i];
arr[i] = arr[child];
arr[child] = temp;
}
else
break;
}
}
/**
* 堆排序算法
*/
void heap_sort(int arr[], int len)
{
int i;
// 調整序列的前半部分元素,調整完之后第一個元素是序列的最大的元素
for (int i = len / 2 - 1; i >= 0; i--)
{
heap_adjust(arr, i, len);
}
for (i = len - 1; i > 0; i--)
{
// 將第1個元素與當前最后一個元素交換,保證當前的最后一個位置的元素都是現(xiàn)在的這個序列中最大的
int temp = arr[0];
arr[0] = arr[i];
arr[i] = temp;
// 不斷縮小調整heap的范圍,每一次調整完畢保證第一個元素是當前序列的最大值
heap_adjust(arr, 0, i);
}
}
其它排序代碼,待補充。。。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
LSTM 模型輸入長度選擇技巧:提升序列建模效能的關鍵? 在循環(huán)神經(jīng)網(wǎng)絡(RNN)家族中,長短期記憶網(wǎng)絡(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報考條件詳解與準備指南? ? 在數(shù)據(jù)驅動決策的時代浪潮下,CDA 數(shù)據(jù)分析師認證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計的實用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實施重大更新。 此次更新旨在確保認 ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務的價值轉化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時代,BI ...
2025-07-10SQL 在預測分析中的應用:從數(shù)據(jù)查詢到趨勢預判? ? 在數(shù)據(jù)驅動決策的時代,預測分析作為挖掘數(shù)據(jù)潛在價值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結束后:分析師的收尾工作與價值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結束)并非工作的終點,而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報考到取證的全攻略? 在數(shù)字經(jīng)濟蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢性檢驗:捕捉數(shù)據(jù)背后的時間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢性檢驗如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時間維度的精準切片? ? 在數(shù)據(jù)的世界里,時間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準 ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應用與實戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗:數(shù)據(jù)趨勢與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領域中,準確捕捉數(shù)據(jù)的趨勢變化以及識別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認證作為國內(nèi)權威的數(shù)據(jù)分析能力認證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應對策略? 長短期記憶網(wǎng)絡(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(RNN)的一種變體,憑借獨特的門控機制,在 ...
2025-07-07統(tǒng)計學方法在市場調研數(shù)據(jù)中的深度應用? 市場調研是企業(yè)洞察市場動態(tài)、了解消費者需求的重要途徑,而統(tǒng)計學方法則是市場調研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅動力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉日期:解鎖數(shù)據(jù)處理的關鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準確性的基礎 ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅動力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03