
大數(shù)據(jù)、人工智能與未來
大數(shù)據(jù)和人工智能的關(guān)系,首先要說什么是大數(shù)據(jù)。這些年來,大數(shù)據(jù)先是被神化,繼而又被妖魔化,到了今天,其實誰也不知道別人所謂的大數(shù)據(jù)指的是什么。有時候大數(shù)據(jù)的定義里既有平臺(硬件)又有分析技術(shù)。但為了說清楚大數(shù)據(jù)和人工智能的關(guān)系,我們還是回歸大數(shù)據(jù)的本質(zhì):海量的、多維度、多形式的數(shù)據(jù)。
任何智能的發(fā)展,其實都需要一個學(xué)習(xí)的過程。而近期人工智能之所以能取得突飛猛進的進展,不能不說是因為這些年來大數(shù)據(jù)長足發(fā)展的結(jié)果。正是由于各類感應(yīng)器和數(shù)據(jù)采集技術(shù)的發(fā)展,我們開始擁有以往難以想象的的海量數(shù)據(jù),同時,也開始在某一領(lǐng)域擁有深度的、細致的數(shù)據(jù)。而這些,都是訓(xùn)練某一領(lǐng)域“智能”的前提。
如果我們把人工智能看成一個嗷嗷待哺擁有無限潛力的嬰兒,某一領(lǐng)域?qū)I(yè)的海量的深度的數(shù)據(jù)就是喂養(yǎng)這個天才的奶粉。奶粉的數(shù)量決定了嬰兒是否能長大,而奶粉的質(zhì)量則決定了嬰兒后續(xù)的智力發(fā)育水平。
與以前的眾多數(shù)據(jù)分析技術(shù)相比,人工智能技術(shù)立足于神經(jīng)網(wǎng)絡(luò),同時發(fā)展出多層神經(jīng)網(wǎng)絡(luò),從而可以進行深度機器學(xué)習(xí)。與以外傳統(tǒng)的算法相比,這一算法并無多余的假設(shè)前提(比如線性建模需要假設(shè)數(shù)據(jù)之間的線性關(guān)系),而是完全利用輸入的數(shù)據(jù)自行模擬和構(gòu)建相應(yīng)的模型結(jié)構(gòu)。這一算法特點決定了它是更為靈活的、且可以根據(jù)不同的訓(xùn)練數(shù)據(jù)而擁有自優(yōu)化的能力。
但這一顯著的優(yōu)點帶來的便是顯著增加的運算量。在計算機運算能力取得突破以前,這樣的算法幾乎沒有實際應(yīng)用的價值。大概十幾年前,我們嘗試用神經(jīng)網(wǎng)絡(luò)運算一組并不海量的數(shù)據(jù),整整等待三天都不一定會有結(jié)果。但今天的情況卻大大不同了。高速并行運算、海量數(shù)據(jù)、更優(yōu)化的算法共同促成了人工智能發(fā)展的突破。
這一突破,如果我們在三十年以后回頭來看,將會是不弱于互聯(lián)網(wǎng)對人類產(chǎn)生深遠影響的另一項技術(shù),它所釋放的力量將再次徹底改變我們的生活。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
訓(xùn)練與驗證損失驟升:機器學(xué)習(xí)訓(xùn)練中的異常診斷與解決方案 在機器學(xué)習(xí)模型訓(xùn)練過程中,“損失曲線” 是反映模型學(xué)習(xí)狀態(tài)的核心指 ...
2025-09-19解析 DataHub 與 Kafka:數(shù)據(jù)生態(tài)中兩類核心工具的差異與協(xié)同 在數(shù)字化轉(zhuǎn)型加速的今天,企業(yè)對數(shù)據(jù)的需求已從 “存儲” 轉(zhuǎn)向 “ ...
2025-09-19CDA 數(shù)據(jù)分析師:讓統(tǒng)計基本概念成為業(yè)務(wù)決策的底層邏輯 統(tǒng)計基本概念是商業(yè)數(shù)據(jù)分析的 “基礎(chǔ)語言”—— 從描述數(shù)據(jù)分布的 “均 ...
2025-09-19CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-19SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學(xué)領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學(xué)計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學(xué)計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11