
現(xiàn)在的人們對購物不在局限于實(shí)體店了,更多的會(huì)選擇網(wǎng)上商城,面對這樣一個(gè)巨大的蛋糕,誰都想去分一杯羹,但是,對于一些網(wǎng)店來說,沒有專業(yè)的數(shù)據(jù)分析團(tuán)隊(duì)的幫助,很難從中脫穎而出。
美團(tuán)的愿景是連接消費(fèi)者和商家,而搜索在其中起著非常重要的作用。隨著業(yè)務(wù)的發(fā)展,美團(tuán)的商家和團(tuán)購數(shù)正在飛速增長。這一背景下,搜索排序的重要性顯得更加突出:排序的優(yōu)化能幫助用戶更便捷地找到滿足其需求的商家和團(tuán)購,改進(jìn)用戶體驗(yàn),提升轉(zhuǎn)化效果。
和傳統(tǒng)網(wǎng)頁搜索問題相比,美團(tuán)的搜索排序有自身的特點(diǎn)——90%的交易發(fā)生在移動(dòng)端。一方面,這對排序的個(gè)性化提出了更高的要求,例如在“火鍋”查 詢下,北京五道口的火鍋店A,對在五道口的用戶U1來說是好的結(jié)果,對在望京的用戶U2來講不一定是好的結(jié)果;另一方面,我們由此積累了用戶在客戶端上豐 富準(zhǔn)確的行為,經(jīng)分析獲得用戶的地理位置、品類和價(jià)格等偏好,進(jìn)而指導(dǎo)個(gè)性化排序。
針對美團(tuán)的O2O業(yè)務(wù)特點(diǎn),我們實(shí)現(xiàn)了一套搜索排序技術(shù)方案,相比規(guī)則排序有百分之幾十的提升?;谶@一方案,我們又抽象了一套通用的O2O排序解 決方案,只需1-2天就可以快速地部署到其他產(chǎn)品和子行業(yè)中,目前在熱詞、Suggestion、酒店、KTV等多個(gè)產(chǎn)品和子行業(yè)中應(yīng)用。
我們將按線上和線下兩部分分別介紹這一通用O2O排序解決方案,本文是線上篇,主要介紹在線服務(wù)框架、特征加載、在線預(yù)估等模塊,下篇將會(huì)著重介紹離線流程。
排序系統(tǒng)
為了快速有效的進(jìn)行搜索算法的迭代,排序系統(tǒng)設(shè)計(jì)上支持靈活的A/B測試,滿足準(zhǔn)確效果追蹤的需求。
美團(tuán)搜索排序系統(tǒng)如上圖所示,主要包括離線數(shù)據(jù)處理、線上服務(wù)和在線數(shù)據(jù)處理三個(gè)模塊。
離線數(shù)據(jù)處理
HDFS/Hive上存儲(chǔ)了搜索展示、點(diǎn)擊、下單和支付等日志。離線數(shù)據(jù)流程按天調(diào)度多個(gè)Map Reduce任務(wù)分析日志,相關(guān)任務(wù)包括:
產(chǎn)出Deal(團(tuán)購單)/POI(商家)、用戶和Query等維度的特征供排序模型使用。
數(shù)據(jù)清洗標(biāo)注 & 模型訓(xùn)練
數(shù)據(jù)清洗去掉爬蟲、作弊等引入的臟數(shù)據(jù);清洗完的數(shù)據(jù)經(jīng)過標(biāo)注后用作模型訓(xùn)練。
效果報(bào)表生成
統(tǒng)計(jì)生成算法效果指標(biāo),指導(dǎo)排序改進(jìn)。
特征監(jiān)控
特征作為排序模型的輸入是排序系統(tǒng)的基礎(chǔ)。特征的錯(cuò)誤異常變動(dòng)會(huì)直接影響排序的效果。特征監(jiān)控主要監(jiān)控特征覆蓋率和取值分布,幫我們及時(shí)發(fā)現(xiàn)相關(guān)問題。
在線數(shù)據(jù)處理
和離線流程相對應(yīng),在線流程通過Storm/Spark Streaming等工具對實(shí)時(shí)日志流進(jìn)行分析處理,產(chǎn)出實(shí)時(shí)特征、實(shí)時(shí)報(bào)表和監(jiān)控?cái)?shù)據(jù),更新在線排序模型。
在線服務(wù)(Rank Service)
Rank Service接到搜索請求后,會(huì)調(diào)用召回服務(wù)獲取候選POI/Deal集合,根據(jù)A/B測試配置為用戶分配排序策略/模型,應(yīng)用策略/模型對候選集合進(jìn)行排序。
下圖是Rank Service內(nèi)部的排序流程。
L1 粗粒度排序(快速)
使用較少的特征、簡單的模型或規(guī)則對候選集進(jìn)行粗粒度排序。
L2 細(xì)粒度排序(較慢)
對L1排序結(jié)果的前N個(gè)進(jìn)行細(xì)粒度排序。這一層會(huì)從特征庫加載特征(通過FeatureLoader),應(yīng)用模型(A/B測試配置分配)進(jìn)行排序。
L3 業(yè)務(wù)規(guī)則干預(yù)
在L2排序的基礎(chǔ)上,應(yīng)用業(yè)務(wù)規(guī)則/人工干預(yù)對排序進(jìn)行適當(dāng)調(diào)整。
Rank Service會(huì)將展示日志記錄到日志收集系統(tǒng),供在線/離線處理。
A/B測試
A/B測試的流量切分是在Rank Server端完成的。我們根據(jù)UUID(用戶標(biāo)識(shí))將流量切分為多個(gè)桶(Bucket),每個(gè)桶對應(yīng)一種排序策略,桶內(nèi)流量將使用相應(yīng)的策略進(jìn)行排序。使用UUID進(jìn)行流量切分,是為了保證用戶體驗(yàn)的一致性。
下面是A/B測試配置的一個(gè)簡單示例。
對于不合法的UUID,每次請求會(huì)隨機(jī)分配一個(gè)桶,以保證效果對比不受影響。白名單(White List)機(jī)制能保證配置用戶使用給定的策略,以輔助相關(guān)的測試。
除了A/B測試之外,我們還應(yīng)用了Interleaving[7]方法,用于比較兩種排序算法。相較于A/B測試,Interleaving方法對 排序算法更靈敏[9],能通過更少的樣本來比較兩種排序算法之間的優(yōu)劣。Interleaving方法使用較小流量幫助我們快速淘汰較差算法,提高策略迭 代效率。
特征加載
搜索排序服務(wù)涉及多種類型的特征,特征獲取和計(jì)算是Rank Service響應(yīng)速度的瓶頸。我們設(shè)計(jì)了FeatureLoader模塊,根據(jù)特征依賴關(guān)系,并行地獲取和計(jì)算特征,有效地減少了特征加載時(shí)間。實(shí)際業(yè) 務(wù)中,并行特征加載平均響應(yīng)時(shí)間比串行特征加載快約20毫秒。
FeatureLoader的實(shí)現(xiàn)中我們使用了Akka[8]。如上圖所示,特征獲取和計(jì)算的被抽象和封裝為了若干個(gè)Akka actor,由Akka調(diào)度、并行執(zhí)行。
特征和模型
美團(tuán)從2013年9月開始在搜索排序上應(yīng)用機(jī)器學(xué)習(xí)方法(Learning to Rank[1]),并且取得很大的收益。這得益于準(zhǔn)確的數(shù)據(jù)標(biāo)注:用戶的點(diǎn)擊下單支付等行為能有效地反映其偏好。通過在特征挖掘和模型優(yōu)化兩方面的工作, 我們不斷地優(yōu)化搜索排序。下面將介紹我們在特征使用、數(shù)據(jù)標(biāo)注、排序算法、Position Bias處理和冷啟動(dòng)問題緩解等方面的工作。
從美團(tuán)業(yè)務(wù)出發(fā),特征選取著眼于用戶、Query、Deal/POI和搜索上下文四個(gè)維度。
用戶維度
包括挖掘得到的品類偏好、消費(fèi)水平和地理位置等。
Query維度
包括Query長度、歷史點(diǎn)擊率、轉(zhuǎn)化率和類型(商家詞/品類詞/地標(biāo)詞)等。
Deal/POI維度
包括Deal/POI銷量、價(jià)格、評價(jià)、折扣率、品類和歷史轉(zhuǎn)化率等。
上下文維度
包括時(shí)間、搜索入口等。
此外,有的特征來自于幾個(gè)維度之間的相互關(guān)系:用戶對Deal/POI的點(diǎn)擊和下單等行為、用戶與POI的距離等是決定排序的重要因素;Query和Deal/POI的文本相關(guān)性和語義相關(guān)性是模型的關(guān)鍵特征。
模型
Learning to Rank應(yīng)用中,我們主要采用了Pointwise方法。采用用戶的點(diǎn)擊、下單和支付等行為來進(jìn)行正樣本的標(biāo)注。從統(tǒng)計(jì)上看,點(diǎn)擊、下單和支付等行為分別 對應(yīng)了該樣本對用戶需求的不同的匹配程度,因此對應(yīng)的樣本會(huì)被當(dāng)做正樣本,且賦予不斷增大的權(quán)重。
線上運(yùn)行著多種不同類型模型,主要包括:
Gradient boosting decision/regression tree(GBDT/GBRT)[2]
GBDT是LTR中應(yīng)用較多的非線性模型。我們開發(fā)了基于Spark的GBDT工具,樹擬合梯度的時(shí)候運(yùn)用了并行方法,縮短訓(xùn)練時(shí)間。GBDT的樹被設(shè)計(jì)為三叉樹,作為一種處理特征缺失的方法。
選擇不同的損失函數(shù),boosting tree方法可以處理回歸問題和分類問題。應(yīng)用中,我們選用了效果更好的logistic likelihood loss,將問題建模為二分類問題。
Logistic Regression(LR)
參考Facebook的paper[3],我們利用GBDT進(jìn)行部分LR特征的構(gòu)建。用FTRL[4]算法來在線訓(xùn)練LR模型。
對模型的評估分為離線和線上兩部分。離線部分我們通過AUC(Area Under the ROC Curve)和MAP(Mean Average Precision)來評價(jià)模型,線上則通過A/B測試來檢驗(yàn)?zāi)P偷膶?shí)際效果,兩項(xiàng)手段支撐著算法不斷的迭代優(yōu)化。
冷啟動(dòng)
在我們的搜索排序系統(tǒng)中,冷啟動(dòng)問題[6] 表現(xiàn)為當(dāng)新的商家、新的團(tuán)購單錄入或新的用戶使用美團(tuán)時(shí),我們沒有足夠的數(shù)據(jù)用來推測用戶對產(chǎn)品的喜好。商家冷啟動(dòng)是主要問題,我們通過兩方面手段來進(jìn)行 緩解。一方面,在模型中引入了文本相關(guān)性、品類相似度、距離和品類屬性等特征,確保在沒有足夠展示和反饋的前提下能較為準(zhǔn)確地預(yù)測;另一方面,我們引入了 Explore&Exploit機(jī)制,對新商家和團(tuán)單給予適度的曝光機(jī)會(huì),以收集反饋數(shù)據(jù)并改善預(yù)測。
Position Bias
在手機(jī)端,搜索結(jié)果的展現(xiàn)形式是列表頁,結(jié)果的展示位置會(huì)對用戶行為產(chǎn)生很大的影響。在特征挖掘和訓(xùn)練數(shù)據(jù)標(biāo)注當(dāng)中,我們考慮了展示位置因素引入的 偏差。例如CTR(click-through-rate)的統(tǒng)計(jì)中,我們基于Examination Model[5],去除展示位置帶來的影響。
總結(jié)
本文主要介紹了美團(tuán)搜索排序系統(tǒng)線上部分的結(jié)構(gòu)、算法和主要模塊。在后續(xù)文章里,我們會(huì)著重介紹排序系統(tǒng)離線部分的工作。
一個(gè)完善的線上線下系統(tǒng)是排序優(yōu)化得以持續(xù)進(jìn)行的基礎(chǔ)。基于業(yè)務(wù)對數(shù)據(jù)和模型上的不斷挖掘是排序持續(xù)改善的動(dòng)力。我們?nèi)栽谔剿鳌?
參考文獻(xiàn)
Learning To Rank. Wikipedia
Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232.
He, X., Pan, J., Jin, O., Xu, T., Liu, B., Xu, T., ... & Candela, J. Q. (2014, August). Practical lessons from predicting clicks on ads at facebook. In Proceedings of 20th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 1-9). ACM.
McMahan, H. B., Holt, G., Sculley, D., Young, M., Ebner, D., Grady, J., ... & Kubica, J. (2013, August). Ad click prediction: a view from the trenches. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1222-1230). ACM.
Craswell, N., Zoeter, O., Taylor, M., & Ramsey, B. (2008, February). An experimental comparison of click position-bias models. In Proceedings of the 2008 International Conference on Web Search and Data Mining (pp. 87-94). ACM.
Cold Start. Wikipedia
Chapelle, O., Joachims, T., Radlinski, F., & Yue, Y. (2012). Large-scale validation and analysis of interleaved search evaluation. ACM Transactions on Information Systems (TOIS), 30(1), 6.
Akka: http://akka.io
Radlinski, F., & Craswell, N. (2010, July). Comparing the sensitivity of information retrieval metrics. In Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval (pp. 667-674). ACM.
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營問題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價(jià)值 在數(shù)據(jù)驅(qū)動(dòng)決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實(shí)踐到業(yè)務(wù)價(jià)值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價(jià)值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10