
來源 | 36大數(shù)據(jù)
隨著大數(shù)據(jù)越來越被重視,數(shù)據(jù)采集的挑戰(zhàn)變的尤為突出。今天為大家介紹幾款數(shù)據(jù)采集平臺:
Apache Flume
Fluentd
Logstash
Chukwa
Scribe
Splunk Forwarder
大數(shù)據(jù)平臺與數(shù)據(jù)采集
任何完整的大數(shù)據(jù)平臺,一般包括以下的幾個過程:
數(shù)據(jù)采集
數(shù)據(jù)存儲
數(shù)據(jù)處理
數(shù)據(jù)展現(xiàn)(可視化,報表和監(jiān)控)
其中,數(shù)據(jù)采集是所有數(shù)據(jù)系統(tǒng)必不可少的,隨著大數(shù)據(jù)越來越被重視,數(shù)據(jù)采集的挑戰(zhàn)也變的尤為突出。這其中包括:
數(shù)據(jù)源多種多樣
數(shù)據(jù)量大,變化快
如何保證數(shù)據(jù)采集的可靠性的性能
如何避免重復(fù)數(shù)據(jù)
如何保證數(shù)據(jù)的質(zhì)量
我們今天就來看看當(dāng)前可用的六款數(shù)據(jù)采集的產(chǎn)品,重點關(guān)注它們是如何做到高可靠,高性能和高擴(kuò)展。
1、Apache Flume
官網(wǎng):https://flume.apache.org/
Flume 是Apache旗下的一款開源、高可靠、高擴(kuò)展、容易管理、支持客戶擴(kuò)展的數(shù)據(jù)采集系統(tǒng)。 Flume使用JRuby來構(gòu)建,所以依賴Java運行環(huán)境。
Flume最初是由Cloudera的工程師設(shè)計用于合并日志數(shù)據(jù)的系統(tǒng),后來逐漸發(fā)展用于處理流數(shù)據(jù)事件。
Flume設(shè)計成一個分布式的管道架構(gòu),可以看作在數(shù)據(jù)源和目的地之間有一個Agent的網(wǎng)絡(luò),支持?jǐn)?shù)據(jù)路由。
每一個agent都由Source,Channel和Sink組成。
Source
Source負(fù)責(zé)接收輸入數(shù)據(jù),并將數(shù)據(jù)寫入管道。Flume的Source支持HTTP,JMS,RPC,NetCat,Exec,Spooling Directory。其中Spooling支持監(jiān)視一個目錄或者文件,解析其中新生成的事件。
Channel
Channel 存儲,緩存從source到Sink的中間數(shù)據(jù)。可使用不同的配置來做Channel,例如內(nèi)存,文件,JDBC等。使用內(nèi)存性能高但不持久,有可能丟數(shù)據(jù)。使用文件更可靠,但性能不如內(nèi)存。
Sink
Sink負(fù)責(zé)從管道中讀出數(shù)據(jù)并發(fā)給下一個Agent或者最終的目的地。Sink支持的不同目的地種類包括:HDFS,HBASE,Solr,ElasticSearch,F(xiàn)ile,Logger或者其它的Flume Agent。
Flume在source和sink端都使用了transaction機(jī)制保證在數(shù)據(jù)傳輸中沒有數(shù)據(jù)丟失。
Source上的數(shù)據(jù)可以復(fù)制到不同的通道上。每一個Channel也可以連接不同數(shù)量的Sink。這樣連接不同配置的Agent就可以組成一個復(fù)雜的數(shù)據(jù)收集網(wǎng)絡(luò)。通過對agent的配置,可以組成一個路由復(fù)雜的數(shù)據(jù)傳輸網(wǎng)絡(luò)。
配置如上圖所示的agent結(jié)構(gòu),F(xiàn)lume支持設(shè)置sink的Failover和Load Balance,這樣就可以保證即使有一個agent失效的情況下,整個系統(tǒng)仍能正常收集數(shù)據(jù)。
Flume中傳輸?shù)膬?nèi)容定義為事件(Event),事件由Headers(包含元數(shù)據(jù),Meta Data)和Payload組成。
Flume提供SDK,可以支持用戶定制開發(fā):
Flume客戶端負(fù)責(zé)在事件產(chǎn)生的源頭把事件發(fā)送給Flume的Agent。客戶端通常和產(chǎn)生數(shù)據(jù)源的應(yīng)用在同一個進(jìn)程空間。常見的Flume客戶端有Avro,log4J,syslog和HTTP Post。另外ExecSource支持指定一個本地進(jìn)程的輸出作為Flume的輸入。當(dāng)然很有可能,以上的這些客戶端都不能滿足需求,用戶可以定制的客戶端,和已有的FLume的Source進(jìn)行通信,或者定制實現(xiàn)一種新的Source類型。
同時,用戶可以使用Flume的SDK定制Source和Sink。似乎不支持定制的Channel。
2、Fluentd
官網(wǎng):http://docs.fluentd.org/articles/quickstart
Fluentd是另一個開源的數(shù)據(jù)收集框架。Fluentd使用C/Ruby開發(fā),使用JSON文件來統(tǒng)一日志數(shù)據(jù)。它的可插拔架構(gòu),支持各種不同種類和格式的數(shù)據(jù)源和數(shù)據(jù)輸出。最后它也同時提供了高可靠和很好的擴(kuò)展性。Treasure Data, Inc 對該產(chǎn)品提供支持和維護(hù)。
Fluentd的部署和Flume非常相似:
Fluentd的架構(gòu)設(shè)計和Flume如出一轍:
Fluentd的Input/Buffer/Output非常類似于Flume的Source/Channel/Sink。
Input
Input負(fù)責(zé)接收數(shù)據(jù)或者主動抓取數(shù)據(jù)。支持syslog,http,file tail等。
Buffer
Buffer負(fù)責(zé)數(shù)據(jù)獲取的性能和可靠性,也有文件或內(nèi)存等不同類型的Buffer可以配置。
Output
Output負(fù)責(zé)輸出數(shù)據(jù)到目的地例如文件,AWS S3或者其它的Fluentd。
Fluentd的配置非常方便,如下圖:
Fluentd的技術(shù)棧如下圖:
FLuentd和其插件都是由Ruby開發(fā),MessgaePack提供了JSON的序列化和異步的并行通信RPC機(jī)制。
Cool.io是基于libev的事件驅(qū)動框架。
FLuentd的擴(kuò)展性非常好,客戶可以自己定制(Ruby)Input/Buffer/Output。
Fluentd從各方面看都很像Flume,區(qū)別是使用Ruby開發(fā),F(xiàn)ootprint會小一些,但是也帶來了跨平臺的問題,并不能支持Windows平臺。另外采用JSON統(tǒng)一數(shù)據(jù)/日志格式是它的另一個特點。相對去Flumed,配置也相對簡單一些。
3、Logstash
https://github.com/elastic/logstash
Logstash是著名的開源數(shù)據(jù)棧ELK (ElasticSearch, Logstash, Kibana)中的那個L。
Logstash用JRuby開發(fā),所有運行時依賴JVM。
Logstash的部署架構(gòu)如下圖,當(dāng)然這只是一種部署的選項。
一個典型的Logstash的配置如下,包括了Input,filter的Output的設(shè)置。
幾乎在大部分的情況下ELK作為一個棧是被同時使用的。所有當(dāng)你的數(shù)據(jù)系統(tǒng)使用ElasticSearch的情況下,logstash是首選。
4、Chukwa
官網(wǎng):https://chukwa.apache.org/
Apache Chukwa是apache旗下另一個開源的數(shù)據(jù)收集平臺,它遠(yuǎn)沒有其他幾個有名。Chukwa基于Hadoop的HDFS和Map Reduce來構(gòu)建(顯而易見,它用Java來實現(xiàn)),提供擴(kuò)展性和可靠性。Chukwa同時提供對數(shù)據(jù)的展示,分析和監(jiān)視。很奇怪的是它的上一次github的更新事7年前??梢娫擁椖繎?yīng)該已經(jīng)不活躍了。
Chukwa的部署架構(gòu)如下:
Chukwa的主要單元有:Agent,Collector,DataSink,ArchiveBuilder,Demux等等,看上去相當(dāng)復(fù)雜。由于該項目已經(jīng)不活躍,我們就不細(xì)看了。
5、Scribe
代碼托管:https://github.com/facebookarchive/scribe
Scribe是Facebook開發(fā)的數(shù)據(jù)(日志)收集系統(tǒng)。已經(jīng)多年不維護(hù),同樣的,就不多說了。
6、Splunk Forwarder
官網(wǎng):http://www.splunk.com/
以上的所有系統(tǒng)都是開源的。在商業(yè)化的大數(shù)據(jù)平臺產(chǎn)品中,Splunk提供完整的數(shù)據(jù)采金,數(shù)據(jù)存儲,數(shù)據(jù)分析和處理,以及數(shù)據(jù)展現(xiàn)的能力。
Splunk是一個分布式的機(jī)器數(shù)據(jù)平臺,主要有三個角色:
Search Head負(fù)責(zé)數(shù)據(jù)的搜索和處理,提供搜索時的信息抽取。
Indexer負(fù)責(zé)數(shù)據(jù)的存儲和索引
Forwarder,負(fù)責(zé)數(shù)據(jù)的收集,清洗,變形,并發(fā)送給Indexer
Splunk內(nèi)置了對Syslog,TCP/UDP,Spooling的支持,同時,用戶可以通過開發(fā)Script Input和Modular Input的方式來獲取特定的數(shù)據(jù)。在Splunk提供的軟件倉庫里有很多成熟的數(shù)據(jù)采集應(yīng)用,例如AWS,數(shù)據(jù)庫(DBConnect)等等,可以方便的從云或者是數(shù)據(jù)庫中獲取數(shù)據(jù)進(jìn)入Splunk的數(shù)據(jù)平臺做分析。
這里要注意的是,Search Head和Indexer都支持Cluster的配置,也就是高可用,高擴(kuò)展的,但是Splunk現(xiàn)在還沒有針對Farwarder的Cluster的功能。也就是說如果有一臺Farwarder的機(jī)器出了故障,數(shù)據(jù)收集也會隨之中斷,并不能把正在運行的數(shù)據(jù)采集任務(wù)Failover到其它的Farwarder上。
總結(jié)
我們簡單討論了幾種流行的數(shù)據(jù)收集平臺,它們大都提供高可靠和高擴(kuò)展的數(shù)據(jù)收集。大多平臺都抽象出了輸入,輸出和中間的緩沖的架構(gòu)。利用分布式的網(wǎng)絡(luò)連接,大多數(shù)平臺都能實現(xiàn)一定程度的擴(kuò)展性和高可靠性。
其中Flume,F(xiàn)luentd是兩個被使用較多的產(chǎn)品。如果你用ElasticSearch,Logstash也許是首選,因為ELK棧提供了很好的集成。Chukwa和Scribe由于項目的不活躍,不推薦使用。
Splunk作為一個優(yōu)秀的商業(yè)產(chǎn)品,它的數(shù)據(jù)采集還存在一定的限制,相信Splunk很快會開發(fā)出更好的數(shù)據(jù)收集的解決方案。
本文鏈接:http://www.36dsj.com/archives/39854end
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
LSTM 模型輸入長度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動決策的時代浪潮下,CDA 數(shù)據(jù)分析師認(rèn)證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計的實用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強(qiáng)大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實施重大更新。 此次更新旨在確保認(rèn) ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時代,BI ...
2025-07-10SQL 在預(yù)測分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢預(yù)判? ? 在數(shù)據(jù)驅(qū)動決策的時代,預(yù)測分析作為挖掘數(shù)據(jù)潛在價值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點,而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報考到取證的全攻略? 在數(shù)字經(jīng)濟(jì)蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢性檢驗:捕捉數(shù)據(jù)背后的時間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢性檢驗如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時間維度的精準(zhǔn)切片? ? 在數(shù)據(jù)的世界里,時間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準(zhǔn) ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認(rèn)證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗:數(shù)據(jù)趨勢與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準(zhǔn)確捕捉數(shù)據(jù)的趨勢變化以及識別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認(rèn)證作為國內(nèi)權(quán)威的數(shù)據(jù)分析能力認(rèn)證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對策略? 長短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨特的門控機(jī)制,在 ...
2025-07-07統(tǒng)計學(xué)方法在市場調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場調(diào)研是企業(yè)洞察市場動態(tài)、了解消費者需求的重要途徑,而統(tǒng)計學(xué)方法則是市場調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當(dāng)下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準(zhǔn)確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03