
R語言與數據分析:主成分分析
作為數據分析師,有很多剛剛接觸數據分析師的朋友,還不怎么了解主成分分析,看看這兩篇,你就搞懂主成分分析了。
第一篇:主成份分析歷史
Pearson于1901年提出,再由Hotelling(1933)加以發(fā)展的一種多變量統(tǒng)計方法。通過析取主成分顯出最大的個別差異,也用來削減回歸分析和聚類分析中變量的數目,可以使用樣本協(xié)方差矩陣或相關系數矩陣作為出發(fā)點進行分析。
通過對原始變量進行線性組合,得到優(yōu)化的指標:把原先多個指標的計算降維為少量幾個經過優(yōu)化指標的計算(占去絕大部分份額)
基本思想:設法將原先眾多具有一定相關性的指標,重新組合為一組新的互相獨立的綜合指標,并代替原先的指標。
成分的保留:Kaiser主張(1960)將特征值小于1的成分放棄,只保留特征值大于1的成分。
接下來以小學生基本生理屬性為案例分享下R語言的具體實現,分別選取身高(x1)、體重(x2)、胸圍(x3)和坐高(x4)。具體如下:
student<- data.frame( x1=c(148,139,160,149,159,142,153,150,151), x2=c(41 ,34 , 49 ,36 ,45 ,31 ,43 ,43,
42), x3=c(72 ,71 , 77 ,67 ,80 ,66 ,76 ,77,77), x4=c(78 ,76 , 86 ,79 ,86 ,76 ,83 ,79 ,80)
) student.pr <- princomp(student,cor=TRUE) summary(student.pr,loadings=TRUE) screeplot(student.pr,type="
lines")
結果如截圖:
由上圖可見四項指標做分析后,給出了4個成分,他們的重要性分別為:0.887932、0.08231182、0.02393843、0.005817781,累積貢獻為:0.887932、0.97024379、
0.99418222 1.000000000各個成分的碎石圖也如上,可見成份1和成份2的累積貢獻已經達到95%,因此采用這兩個成份便可充分解釋學生的基本信息。
我們可以通過R自動算出各主成份的值,并畫出散點圖:
temp<-predict(student.pr)
plot(temp[,1:2])
結果如圖:
觀察如圖可見兩個成分的分離度很高,比較理想。
第二篇: 主成分分析(principal component analysis,PCA)是一種降維技術,把多個變量化為能夠反映原始變量大部分信息的少數幾個主成分。
設X有p個變量,為n*p階矩陣,即n個樣本的p維向量。首先"數據分析師"對X的p個變量尋找正規(guī)化線性組合,使它的方差達到最大,這個新的變量稱為第一主成分,抽取第一主成分后,第二主成分的抽取方法與第一主成分一樣,依次類推,直到各主成分累積方差達到總方差的一定比例。
主成分分析的計算步驟:
假設樣本觀測數據矩陣為:
X=(x1,x2,x3,…xp),xi為n個樣本在第i個屬性上的觀測值,是一個列向量
1.對原始數據標準化處理(0均值化處理)
2.計算樣本相關系數矩陣
3.計算協(xié)方差矩陣的特征值和特征向量
4、選擇重要的主成分,并寫出主成分表達式
5.計算主成分得分
6.根據主成分得分的數據,做進一步的統(tǒng)計分析。
主成分分析可以得到p個主成分,但是,由于各個主成分的方差是遞減的,包含的信息量也是遞減的,所以實際分析時,一般不是選取p個主成分,而是根據各個主成分累計貢獻率的大小選取前k個主成分,這里貢獻率就是指某個主成分的方差占全部方差的比重,實際也就是某個特征值占全部特征值總和的比重。貢獻率越大,說明該主成分所包含的原始變量的信息越強。主成分個數k的選取,主要根據主成分的累積貢獻率來決定,即一般要求累計貢獻率達到85%以上,這樣才能保證綜合變量能包括原始變量的絕大多數信息。
另外,數據分析師在實際應用中,選擇了重要的主成分后,還要注意主成分實際含義解釋。主成分分析中一個很關鍵的問題是如何給主成分賦予新的意義,給出合理的解釋。一般而言,這個解釋"數據分析師"是根據主成分表達式的系數結合定性分析來進行的。主成分是原來變量的線性組合,在這個線性組合中個變量的系數有大有小,有正有負,有的大小相當,因而不能簡單地認為這個主成分是某個原變量的屬性的作用,線性組合中各變量系數的絕對值大者表明該主成分主要綜合了絕對值大的變量,有幾個變量系數大小相當時,應認為這一主成分是這幾個變量的總和,這幾個變量綜合在一起應賦予怎樣的實際意義,這要結合具體實際問題和專業(yè),給出恰當的解釋,進而才能達到深刻分析的目的 。
在R里手工統(tǒng)計過程如下:
> #數據集
> y=USArrests
> #相關矩陣
> c=cor(y)
> #特征值
> e=eigen(c)
> e
$values #特征值
[1] 2.4802416 0.9897652 0.3565632 0.1734301
$vectors 特征向量,也就是主成分的表達式
[,1] [,2] [,3] [,4]
[1,] -0.5358995 0.4181809 -0.3412327 0.64922780
[2,] -0.5831836 0.1879856 -0.2681484 -0.74340748
[3,] -0.2781909 -0.8728062 -0.3780158 0.13387773
[4,] -0.5434321 -0.1673186 0.8177779 0.08902432
> # 計算標準化的主成分得分
> scale( as.matrix(y))%*%e$vector
[,1] [,2] [,3] [,4]
Alabama -0.97566045 1.12200121 -0.43980366 0.154696581
Alaska -1.93053788 1.06242692 2.01950027 -0.434175454
Arizona -1.74544285 -0.73845954 0.05423025 -0.826264240
Arkansas 0.13999894 1.10854226 0.11342217 -0.180973554
…..
West Virginia 2.08739306 1.41052627 0.10372163 0.130583080
Wisconsin 2.05881199 -0.60512507 -0.13746933 0.182253407
Wyoming 0.62310061 0.31778662 -0.23824049 -0.164976866
R中下面兩個函數可以用做主成分分析
princomp(x, cor = FALSE, scores = TRUE, covmat = NULL,
subset = rep(TRUE, nrow(as.matrix(x))), …)
cor =TRUE 是使用相關矩陣求主成分,否則使用協(xié)方差矩陣。
prcomp(x, retx = TRUE, center = TRUE, scale. = FALSE,
tol = NULL, …)
scale =TRUE 即使用相關矩陣求主成分夬否則使用協(xié)方差矩陣
求主成分。
> # prcomp() 的用法
> p=prcomp(USArrests, scale=T)
> p
Standard deviations:
[1] 1.5748783 0.9948694 0.5971291 0.4164494
Rotation:
PC1 PC2 PC3 PC4
Murder -0.5358995 0.4181809 -0.3412327 0.64922780
Assault -0.5831836 0.1879856 -0.2681484 -0.74340748
UrbanPop -0.2781909 -0.8728062 -0.3780158 0.13387773
Rape -0.5434321 -0.1673186 0.8177779 0.08902432
> summary(p)
Importance of components:
PC1 PC2 PC3 PC4
Standard deviation 1.5749 0.9949 0.59713 0.41645
Proportion of Variance 0.6201 0.2474 0.08914 0.04336
Cumulative Proportion 0.6201 0.8675 0.95664 1.00000
#計算標準化的主成分得分
> predict(p)cda數據分析師培訓
結果和手工統(tǒng)計的一樣。
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數的日期轉換:從基礎用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數據處理中,日期格式轉換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關聯查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數據庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數據分析師:表結構數據 “獲取 - 加工 - 使用” 全流程的賦能者 表結構數據(如數據庫表、Excel 表、CSV 文件)是企業(yè)數字 ...
2025-09-18DSGE 模型中的 Et:理性預期算子的內涵、作用與應用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數據分析師:解鎖表結構數據特征價值的專業(yè)核心 表結構數據(以 “行 - 列” 規(guī)范存儲的結構化數據,如數據庫表、Excel 表、 ...
2025-09-17Excel 導入數據含缺失值?詳解 dropna 函數的功能與實戰(zhàn)應用 在用 Python(如 pandas 庫)處理 Excel 數據時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應用 在數據分析與統(tǒng)計學領域,假設檢驗是驗證研究假設、判斷數據差異是否 “ ...
2025-09-16CDA 數據分析師:掌控表格結構數據全功能周期的專業(yè)操盤手 表格結構數據(以 “行 - 列” 存儲的結構化數據,如 Excel 表、數據 ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網絡請求開發(fā)時(如使用requests ...
2025-09-15CDA 數據分析師:激活表格結構數據價值的核心操盤手 表格結構數據(如 Excel 表格、數據庫表)是企業(yè)最基礎、最核心的數據形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調用、數據爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數據的科學計數法問題 為幫助 Python 數據從業(yè)者解決pd.read_csv讀取長浮點數據時的科學計數法問題 ...
2025-09-12CDA 數據分析師:業(yè)務數據分析步驟的落地者與價值優(yōu)化者 業(yè)務數據分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務邏輯:從規(guī)則拆解到數據把關的實戰(zhàn)指南 在業(yè)務系統(tǒng)落地過程中,“業(yè)務邏輯” 是連接 “需求設計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數據驅動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數據分析師與戰(zhàn)略 / 業(yè)務數據分析:概念辨析與協(xié)同價值 在數據驅動決策的體系中,“戰(zhàn)略數據分析”“業(yè)務數據分析” 是企業(yè) ...
2025-09-11Excel 數據聚類分析:從操作實踐到業(yè)務價值挖掘 在數據分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數據中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數據解讀到決策支撐的價值導向 統(tǒng)計模型作為數據分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10