
R語言與數(shù)據(jù)分析:主成分分析
作為數(shù)據(jù)分析師,有很多剛剛接觸數(shù)據(jù)分析師的朋友,還不怎么了解主成分分析,看看這兩篇,你就搞懂主成分分析了。
第一篇:主成份分析歷史
Pearson于1901年提出,再由Hotelling(1933)加以發(fā)展的一種多變量統(tǒng)計方法。通過析取主成分顯出最大的個別差異,也用來削減回歸分析和聚類分析中變量的數(shù)目,可以使用樣本協(xié)方差矩陣或相關(guān)系數(shù)矩陣作為出發(fā)點進行分析。
通過對原始變量進行線性組合,得到優(yōu)化的指標:把原先多個指標的計算降維為少量幾個經(jīng)過優(yōu)化指標的計算(占去絕大部分份額)
基本思想:設法將原先眾多具有一定相關(guān)性的指標,重新組合為一組新的互相獨立的綜合指標,并代替原先的指標。
成分的保留:Kaiser主張(1960)將特征值小于1的成分放棄,只保留特征值大于1的成分。
接下來以小學生基本生理屬性為案例分享下R語言的具體實現(xiàn),分別選取身高(x1)、體重(x2)、胸圍(x3)和坐高(x4)。具體如下:
student<- data.frame( x1=c(148,139,160,149,159,142,153,150,151), x2=c(41 ,34 , 49 ,36 ,45 ,31 ,43 ,43,
42), x3=c(72 ,71 , 77 ,67 ,80 ,66 ,76 ,77,77), x4=c(78 ,76 , 86 ,79 ,86 ,76 ,83 ,79 ,80)
) student.pr <- princomp(student,cor=TRUE) summary(student.pr,loadings=TRUE) screeplot(student.pr,type="
lines")
結(jié)果如截圖:
由上圖可見四項指標做分析后,給出了4個成分,他們的重要性分別為:0.887932、0.08231182、0.02393843、0.005817781,累積貢獻為:0.887932、0.97024379、
0.99418222 1.000000000各個成分的碎石圖也如上,可見成份1和成份2的累積貢獻已經(jīng)達到95%,因此采用這兩個成份便可充分解釋學生的基本信息。
我們可以通過R自動算出各主成份的值,并畫出散點圖:
temp<-predict(student.pr)
plot(temp[,1:2])
結(jié)果如圖:
觀察如圖可見兩個成分的分離度很高,比較理想。
第二篇: 主成分分析(principal component analysis,PCA)是一種降維技術(shù),把多個變量化為能夠反映原始變量大部分信息的少數(shù)幾個主成分。
設X有p個變量,為n*p階矩陣,即n個樣本的p維向量。首先"數(shù)據(jù)分析師"對X的p個變量尋找正規(guī)化線性組合,使它的方差達到最大,這個新的變量稱為第一主成分,抽取第一主成分后,第二主成分的抽取方法與第一主成分一樣,依次類推,直到各主成分累積方差達到總方差的一定比例。
主成分分析的計算步驟:
假設樣本觀測數(shù)據(jù)矩陣為:
X=(x1,x2,x3,…xp),xi為n個樣本在第i個屬性上的觀測值,是一個列向量
1.對原始數(shù)據(jù)標準化處理(0均值化處理)
2.計算樣本相關(guān)系數(shù)矩陣
3.計算協(xié)方差矩陣的特征值和特征向量
4、選擇重要的主成分,并寫出主成分表達式
5.計算主成分得分
6.根據(jù)主成分得分的數(shù)據(jù),做進一步的統(tǒng)計分析。
主成分分析可以得到p個主成分,但是,由于各個主成分的方差是遞減的,包含的信息量也是遞減的,所以實際分析時,一般不是選取p個主成分,而是根據(jù)各個主成分累計貢獻率的大小選取前k個主成分,這里貢獻率就是指某個主成分的方差占全部方差的比重,實際也就是某個特征值占全部特征值總和的比重。貢獻率越大,說明該主成分所包含的原始變量的信息越強。主成分個數(shù)k的選取,主要根據(jù)主成分的累積貢獻率來決定,即一般要求累計貢獻率達到85%以上,這樣才能保證綜合變量能包括原始變量的絕大多數(shù)信息。
另外,數(shù)據(jù)分析師在實際應用中,選擇了重要的主成分后,還要注意主成分實際含義解釋。主成分分析中一個很關(guān)鍵的問題是如何給主成分賦予新的意義,給出合理的解釋。一般而言,這個解釋"數(shù)據(jù)分析師"是根據(jù)主成分表達式的系數(shù)結(jié)合定性分析來進行的。主成分是原來變量的線性組合,在這個線性組合中個變量的系數(shù)有大有小,有正有負,有的大小相當,因而不能簡單地認為這個主成分是某個原變量的屬性的作用,線性組合中各變量系數(shù)的絕對值大者表明該主成分主要綜合了絕對值大的變量,有幾個變量系數(shù)大小相當時,應認為這一主成分是這幾個變量的總和,這幾個變量綜合在一起應賦予怎樣的實際意義,這要結(jié)合具體實際問題和專業(yè),給出恰當?shù)慕忉?,進而才能達到深刻分析的目的 。
在R里手工統(tǒng)計過程如下:
> #數(shù)據(jù)集
> y=USArrests
> #相關(guān)矩陣
> c=cor(y)
> #特征值
> e=eigen(c)
> e
$values #特征值
[1] 2.4802416 0.9897652 0.3565632 0.1734301
$vectors 特征向量,也就是主成分的表達式
[,1] [,2] [,3] [,4]
[1,] -0.5358995 0.4181809 -0.3412327 0.64922780
[2,] -0.5831836 0.1879856 -0.2681484 -0.74340748
[3,] -0.2781909 -0.8728062 -0.3780158 0.13387773
[4,] -0.5434321 -0.1673186 0.8177779 0.08902432
> # 計算標準化的主成分得分
> scale( as.matrix(y))%*%e$vector
[,1] [,2] [,3] [,4]
Alabama -0.97566045 1.12200121 -0.43980366 0.154696581
Alaska -1.93053788 1.06242692 2.01950027 -0.434175454
Arizona -1.74544285 -0.73845954 0.05423025 -0.826264240
Arkansas 0.13999894 1.10854226 0.11342217 -0.180973554
…..
West Virginia 2.08739306 1.41052627 0.10372163 0.130583080
Wisconsin 2.05881199 -0.60512507 -0.13746933 0.182253407
Wyoming 0.62310061 0.31778662 -0.23824049 -0.164976866
R中下面兩個函數(shù)可以用做主成分分析
princomp(x, cor = FALSE, scores = TRUE, covmat = NULL,
subset = rep(TRUE, nrow(as.matrix(x))), …)
cor =TRUE 是使用相關(guān)矩陣求主成分,否則使用協(xié)方差矩陣。
prcomp(x, retx = TRUE, center = TRUE, scale. = FALSE,
tol = NULL, …)
scale =TRUE 即使用相關(guān)矩陣求主成分夬否則使用協(xié)方差矩陣
求主成分。
> # prcomp() 的用法
> p=prcomp(USArrests, scale=T)
> p
Standard deviations:
[1] 1.5748783 0.9948694 0.5971291 0.4164494
Rotation:
PC1 PC2 PC3 PC4
Murder -0.5358995 0.4181809 -0.3412327 0.64922780
Assault -0.5831836 0.1879856 -0.2681484 -0.74340748
UrbanPop -0.2781909 -0.8728062 -0.3780158 0.13387773
Rape -0.5434321 -0.1673186 0.8177779 0.08902432
> summary(p)
Importance of components:
PC1 PC2 PC3 PC4
Standard deviation 1.5749 0.9949 0.59713 0.41645
Proportion of Variance 0.6201 0.2474 0.08914 0.04336
Cumulative Proportion 0.6201 0.8675 0.95664 1.00000
#計算標準化的主成分得分
> predict(p)cda數(shù)據(jù)分析師培訓
結(jié)果和手工統(tǒng)計的一樣。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
LSTM 模型輸入長度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(RNN)家族中,長短期記憶網(wǎng)絡(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報考條件詳解與準備指南? ? 在數(shù)據(jù)驅(qū)動決策的時代浪潮下,CDA 數(shù)據(jù)分析師認證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計的實用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實施重大更新。 此次更新旨在確保認 ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務的價值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時代,BI ...
2025-07-10SQL 在預測分析中的應用:從數(shù)據(jù)查詢到趨勢預判? ? 在數(shù)據(jù)驅(qū)動決策的時代,預測分析作為挖掘數(shù)據(jù)潛在價值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點,而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報考到取證的全攻略? 在數(shù)字經(jīng)濟蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢性檢驗:捕捉數(shù)據(jù)背后的時間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢性檢驗如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時間維度的精準切片? ? 在數(shù)據(jù)的世界里,時間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準 ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應用與實戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗:數(shù)據(jù)趨勢與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準確捕捉數(shù)據(jù)的趨勢變化以及識別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認證作為國內(nèi)權(quán)威的數(shù)據(jù)分析能力認證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應對策略? 長短期記憶網(wǎng)絡(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(RNN)的一種變體,憑借獨特的門控機制,在 ...
2025-07-07統(tǒng)計學方法在市場調(diào)研數(shù)據(jù)中的深度應用? 市場調(diào)研是企業(yè)洞察市場動態(tài)、了解消費者需求的重要途徑,而統(tǒng)計學方法則是市場調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準確性的基礎 ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03