99999久久久久久亚洲,欧美人与禽猛交狂配,高清日韩av在线影院,一个人在线高清免费观看,啦啦啦在线视频免费观看www

熱線電話:13121318867

登錄
首頁精彩閱讀數(shù)據(jù)分析方法匯總(1)
數(shù)據(jù)分析方法匯總(1)
2016-01-18
收藏

數(shù)據(jù)分析方法匯總(1)

很長時間沒有寫過關(guān)于數(shù)據(jù)分析師的文章了,做數(shù)據(jù)分析師也好多年了,近期好多數(shù)據(jù)小白們在問,數(shù)據(jù)分析師的數(shù)據(jù)分析方法都有哪些,下面是對數(shù)據(jù)分析方法的總結(jié)。

一、描述統(tǒng)計

描述性統(tǒng)計是指運用制表和分類,圖形以及計筠概括性數(shù)據(jù)來描述數(shù)據(jù)的集中趨勢、離散趨勢、偏度、峰度。

1、缺失值填充:常用方法:剔除法、均值法、最小鄰居法、比率\回歸法、決策樹法。

2、正態(tài)性檢驗:很多統(tǒng)計方法都要求數(shù)值服從或近似服從正態(tài)分布,所以之前需要進(jìn)行正態(tài)性檢驗。常用方法:非參數(shù)檢驗的K-量檢驗、P-P圖、Q-Q圖、W檢驗、動差法。

二、假設(shè)檢驗

1、參數(shù)檢驗

參數(shù)檢驗是在已知總體分布的條件下(一股要求總體服從正態(tài)分布)對一些主要的參數(shù)(如均值、百分?jǐn)?shù)、方差、相關(guān)系數(shù)等)進(jìn)行的檢驗 。

1)U驗   使用條件:當(dāng)樣本含量n較大時,樣本值符合正態(tài)分布

2)T檢驗 使用條件:當(dāng)樣本含量n較小時,樣本值符合正態(tài)分布

A  單樣本t檢驗:推斷該樣本來自的總體均數(shù)μ與已知的某一總體均數(shù)μ0 (常為理論值或標(biāo)準(zhǔn)值)有無差別;

B  配對樣本t檢驗:當(dāng)總體均數(shù)未知時,且兩個樣本可以配對,同對中的兩者在可能會影響處理效果的各種條件方面扱為相似;

C 兩獨立樣本t檢驗:無法找到在各方面極為相似的兩樣本作配對比較時使用。

2、非參數(shù)檢驗

非參數(shù)檢驗則不考慮總體分布是否已知,常常也不是針對總體參數(shù),而是針對總體的某些一股性假設(shè)(如總體分布的位罝是否相同,總體分布是否正態(tài))進(jìn)行檢驗。

適用情況:順序類型的數(shù)據(jù)資料,這類數(shù)據(jù)的分布形態(tài)一般是未知的。

A 雖然是連續(xù)數(shù)據(jù),但總體分布形態(tài)未知或者非正態(tài);

B 體分布雖然正態(tài),數(shù)據(jù)也是連續(xù)類型,但樣本容量極小,如10以下;

主要方法包括:卡方檢驗、秩和檢驗、二項檢驗、游程檢驗、K-量檢驗等。

三、信度分析

檢査測量的可信度,例如調(diào)查問卷的真實性。

分類:

1、外在信度:不同時間測量時量表的一致性程度,常用方法重測信度

2、內(nèi)在信度;每個量表是否測量到單一的概念,同時組成兩表的內(nèi)在體項一致性如何,常用方法分半信度。

四、列聯(lián)表分析

用于分析離散變量或定型變量之間是否存在相關(guān)。

對于二維表,可進(jìn)行卡方檢驗,對于三維表,可作Mentel-Hanszel分層分析。

列聯(lián)表分析還包括配對計數(shù)資料的卡方檢驗、行列均為順序變量的相關(guān)檢驗。

五、相關(guān)分析

研究現(xiàn)象之間是否存在某種依存關(guān)系,對具體有依存關(guān)系的現(xiàn)象探討相關(guān)方向及相關(guān)程度。

1、單相關(guān): 兩個因素之間的相關(guān)關(guān)系叫單相關(guān),即研究時只涉及一個自變量和一個因變量;

2、復(fù)相關(guān) :三個或三個以上因素的相關(guān)關(guān)系叫復(fù)相關(guān),即研究時涉及兩個或兩個以上的自變量和因變量相關(guān);

3、偏相關(guān):在某一現(xiàn)象與多種現(xiàn)象相關(guān)的場合,當(dāng)假定其他變量不變時,其中兩個變量之間的相關(guān)關(guān)系稱為偏相關(guān)。

六、方差分析

使用條件:各樣本須是相互獨立的隨機樣本;各樣本來自正態(tài)分布總體;各總體方差相等。

分類

1、單因素方差分析:一項試驗只有一個影響因素,或者存在多個影響因素時,只分析一個因素與響應(yīng)變量的關(guān)系

2、多因素有交互方差分析:一頊實驗有多個影響因素,分析多個影響因素與響應(yīng)變量的關(guān)系,同時考慮多個影響因素之間的關(guān)系

3、多因素?zé)o交互方差分析:分析多個影響因素與響應(yīng)變量的關(guān)系,但是影響因素之間沒有影響關(guān)系或忽略影響關(guān)系

4、協(xié)方差分祈:傳統(tǒng)的方差分析存在明顯的弊端,無法控制分析中存在的某些隨機因素,使之影響了分祈結(jié)果的準(zhǔn)確度。協(xié)方差分析主要是在排除了協(xié)變量的影響后再對修正后的主效應(yīng)進(jìn)行方差分析,是將線性回歸方差分析結(jié)合起來的一種分析方法,

七、回歸分析

分類:

1、一元線性回歸分析:只有一個自變量X與因變量Y有關(guān),X與Y都必須是連續(xù)型變量,因變量y或其殘差必須服從正態(tài)分布。

2、多元線性回歸分析

使用條件:分析多個自變量與因變量Y的關(guān)系,X與Y都必須是連續(xù)型變量,因變量y或其殘差必須服從正態(tài)分布 。

1)變呈篩選方式:選擇最優(yōu)回歸方程的變里篩選法包括全橫型法(CP法)、逐步回歸法,向前引入法和向后剔除法

2)橫型診斷方法:

A 殘差檢驗: 觀測值與估計值的差值要艱從正態(tài)分布

B 強影響點判斷:尋找方式一般分為標(biāo)準(zhǔn)誤差法、Mahalanobis距離法

C 共線性診斷:

·診斷方式:容忍度、方差擴大因子法(又稱膨脹系數(shù)VIF)、特征根判定法、條件指針CI、方差比例

·處理方法:增加樣本容量或選取另外的回歸如主成分回歸、嶺回歸等

3、Logistic回歸分析

    線性回歸模型要求因變量是連續(xù)的正態(tài)分布變里,且自變量和因變量呈線性關(guān)系,而Logistic回歸模型對因變量的分布沒有要求,一般用于因變量是離散時的情況

分類:

Logistic回歸模型有條件與非條件之分,條件Logistic回歸模型和非條件Logistic回歸模型的區(qū)別在于參數(shù)的估計是否用到了條件概率。

4、其他回歸方法 非線性回歸、有序回歸、Probit回歸、加權(quán)回歸等

數(shù)據(jù)分析咨詢請掃描二維碼

若不方便掃碼,搜微信號:CDAshujufenxi

數(shù)據(jù)分析師資訊
更多

OK
客服在線
立即咨詢
客服在線
立即咨詢
') } function initGt() { var handler = function (captchaObj) { captchaObj.appendTo('#captcha'); captchaObj.onReady(function () { $("#wait").hide(); }).onSuccess(function(){ $('.getcheckcode').removeClass('dis'); $('.getcheckcode').trigger('click'); }); window.captchaObj = captchaObj; }; $('#captcha').show(); $.ajax({ url: "/login/gtstart?t=" + (new Date()).getTime(), // 加隨機數(shù)防止緩存 type: "get", dataType: "json", success: function (data) { $('#text').hide(); $('#wait').show(); // 調(diào)用 initGeetest 進(jìn)行初始化 // 參數(shù)1:配置參數(shù) // 參數(shù)2:回調(diào),回調(diào)的第一個參數(shù)驗證碼對象,之后可以使用它調(diào)用相應(yīng)的接口 initGeetest({ // 以下 4 個配置參數(shù)為必須,不能缺少 gt: data.gt, challenge: data.challenge, offline: !data.success, // 表示用戶后臺檢測極驗服務(wù)器是否宕機 new_captcha: data.new_captcha, // 用于宕機時表示是新驗證碼的宕機 product: "float", // 產(chǎn)品形式,包括:float,popup width: "280px", https: true // 更多配置參數(shù)說明請參見:http://docs.geetest.com/install/client/web-front/ }, handler); } }); } function codeCutdown() { if(_wait == 0){ //倒計時完成 $(".getcheckcode").removeClass('dis').html("重新獲取"); }else{ $(".getcheckcode").addClass('dis').html("重新獲取("+_wait+"s)"); _wait--; setTimeout(function () { codeCutdown(); },1000); } } function inputValidate(ele,telInput) { var oInput = ele; var inputVal = oInput.val(); var oType = ele.attr('data-type'); var oEtag = $('#etag').val(); var oErr = oInput.closest('.form_box').next('.err_txt'); var empTxt = '請輸入'+oInput.attr('placeholder')+'!'; var errTxt = '請輸入正確的'+oInput.attr('placeholder')+'!'; var pattern; if(inputVal==""){ if(!telInput){ errFun(oErr,empTxt); } return false; }else { switch (oType){ case 'login_mobile': pattern = /^1[3456789]\d{9}$/; if(inputVal.length==11) { $.ajax({ url: '/login/checkmobile', type: "post", dataType: "json", data: { mobile: inputVal, etag: oEtag, page_ur: window.location.href, page_referer: document.referrer }, success: function (data) { } }); } break; case 'login_yzm': pattern = /^\d{6}$/; break; } if(oType=='login_mobile'){ } if(!!validateFun(pattern,inputVal)){ errFun(oErr,'') if(telInput){ $('.getcheckcode').removeClass('dis'); } }else { if(!telInput) { errFun(oErr, errTxt); }else { $('.getcheckcode').addClass('dis'); } return false; } } return true; } function errFun(obj,msg) { obj.html(msg); if(msg==''){ $('.login_submit').removeClass('dis'); }else { $('.login_submit').addClass('dis'); } } function validateFun(pat,val) { return pat.test(val); }