
《數(shù)據(jù)分析專項練習(xí)題庫》
《CDA數(shù)據(jù)分析認(rèn)證考試模擬題庫》
《企業(yè)數(shù)據(jù)分析面試題庫》
一、單選題
1.某超市研究銷售紀(jì)錄數(shù)據(jù)后發(fā)現(xiàn),買啤酒的人很大概率也會購買尿布,這種屬于數(shù)據(jù)挖掘的哪類問題?(A)
A. 關(guān)聯(lián)規(guī)則發(fā)現(xiàn)
B. 聚類
C. 分類
D. 自然語言處理
2.以下兩種描述分別對應(yīng)哪兩種對分類算法的評價標(biāo)準(zhǔn)? (A)
(a)警察抓小偷,描述警察抓的人中有多少個是小偷的標(biāo)準(zhǔn)。
(b)描述有多少比例的小偷給警察抓了的標(biāo)準(zhǔn)。
A. Precision, Recall
B. Recall, Precision
C. Precision, ROC
D. Recall, ROC
3.將原始數(shù)據(jù)進(jìn)行集成、變換、維度規(guī)約、數(shù)值規(guī)約是在以下哪個步驟的任務(wù)?(C)
A. 頻繁模式挖掘
B. 分類和預(yù)測
D. 數(shù)據(jù)流挖掘
4.當(dāng)不知道數(shù)據(jù)所帶標(biāo)簽時,可以使用哪種技術(shù)促使帶同類標(biāo)簽的數(shù)據(jù)與帶其他標(biāo)簽的數(shù)據(jù)相分離?(B)
A. 分類
B. 聚類
C. 關(guān)聯(lián)分析
D. 隱馬爾可夫鏈
5.什么是KDD? (A)
A. 數(shù)據(jù)挖掘與知識發(fā)現(xiàn)
B. 領(lǐng)域知識發(fā)現(xiàn)
C. 文檔知識發(fā)現(xiàn)
D. 動態(tài)知識發(fā)現(xiàn)
6.使用交互式的和可視化的技術(shù),對數(shù)據(jù)進(jìn)行探索屬于數(shù)據(jù)挖掘的哪一類任務(wù)?(A)
A. 探索性數(shù)據(jù)分析
B. 建模描述
C. 預(yù)測建模
D. 尋找模式和規(guī)則
7.為數(shù)據(jù)的總體分布建模;把多維空間劃分成組等問題屬于數(shù)據(jù)挖掘的哪一類任務(wù)?(B)
A. 探索性數(shù)據(jù)分析
B. 建模描述
C. 預(yù)測建模
D. 尋找模式和規(guī)則
8.建立一個模型,通過這個模型根據(jù)已知的變量值來預(yù)測其他某個變量值屬于數(shù)據(jù)挖掘的哪一類任務(wù)?(C)
A. 根據(jù)內(nèi)容檢索
B. 建模描述
C. 預(yù)測建模
D. 尋找模式和規(guī)則
9.用戶有一種感興趣的模式并且希望在數(shù)據(jù)集中找到相似的模式,屬于數(shù)據(jù)挖掘哪一類任務(wù)?(A)
A. 根據(jù)內(nèi)容檢索
B. 建模描述
C. 預(yù)測建模
D. 尋找模式和規(guī)則
10.下面哪種不屬于數(shù)據(jù)預(yù)處理的方法? (D)
A變量代換
B離散化
C聚集
D估計遺漏值
11.假設(shè)12個銷售價格記錄組已經(jīng)排序如下:5, 10, 11, 13, 15,35, 50, 55, 72, 92, 204, 215,將它們劃分成四個箱,等頻(等深)劃分時,15在第幾個箱子內(nèi)? (B)
A 第一個
B 第二個
C 第三個
D 第四個
12. 假設(shè)12個銷售價格記錄組已經(jīng)排序如下:5, 10, 11, 13, 15,35, 50, 55, 72, 92, 204, 215,等寬劃分時(寬度為50),15又在哪個箱子里? (A)
A 第一個
B 第二個
C 第三個
D 第四個
13.下面哪個不屬于數(shù)據(jù)的屬性類型:(D)
A 標(biāo)稱
B 序數(shù)
C 區(qū)間
D相異
14.只有非零值才重要的二元屬性被稱作:( C )
A 計數(shù)屬性
B 離散屬性
C非對稱的二元屬性
D 對稱屬性
15.以下哪種方法不屬于特征選擇的標(biāo)準(zhǔn)方法: (D)
A 嵌入
B 過濾
C 包裝
D 抽樣
16.下面不屬于創(chuàng)建新屬性的相關(guān)方法的是: (B)
A特征提取
B特征修改
C映射數(shù)據(jù)到新的空間
D特征構(gòu)造
17.考慮值集{1、2、3、4、5、90},其截斷均值(p=20%)是 (C)
A 2
B 3
C 3.5
D 5
18.下面哪個屬于映射數(shù)據(jù)到新的空間的方法? (A)
A 傅立葉變換
B 特征加權(quán)
C 漸進(jìn)抽樣
D 維歸約
19.熵是為消除不確定性所需要獲得的信息量,投擲均勻正六面體骰子的熵是: (B)
A 1比特
B 2.6比特
C 3.2比特
D 3.8比特
20.假設(shè)屬性income的最大最小值分別是12000元和98000元。利用最大最小規(guī)范化的方法將屬性的值映射到0至1的范圍內(nèi)。對屬性income的73600元將被轉(zhuǎn)化為:(D)
A 0.821
B 1.224
C 1.458
D 0.716
21.假定用于分析的數(shù)據(jù)包含屬性age。數(shù)據(jù)元組中age的值如下(按遞增序):13,15,16,16,19,20,20,21,22,22,25,25,25,30,33,33,35,35,36,40,45,46,52,70, 問題:使用按箱平均值平滑方法對上述數(shù)據(jù)進(jìn)行平滑,箱的深度為3。第二個箱子值為:(A)
A 18.3
B 22.6
C 26.8
D 27.9
22.考慮值集{12 24 33 2 4 55 68 26},其四分位數(shù)極差是:(A)
A 31
B 24
C 55
D 3
23.下列哪個不是專門用于可視化時間空間數(shù)據(jù)的技術(shù): (B)
A 等高線圖
B 餅圖
C 曲面圖
D 矢量場圖
24.在抽樣方法中,當(dāng)合適的樣本容量很難確定時,可以使用的抽樣方法是: (D)
A 有放回的簡單隨機(jī)抽樣
B 無放回的簡單隨機(jī)抽樣
C 分層抽樣
D 漸進(jìn)抽樣
25.數(shù)據(jù)倉庫是隨著時間變化的,下面的描述不正確的是 (C)
A. 數(shù)據(jù)倉庫隨時間的變化不斷增加新的數(shù)據(jù)內(nèi)容;
B. 捕捉到的新數(shù)據(jù)會覆蓋原來的快照;
C. 數(shù)據(jù)倉庫隨時間變化不斷刪去舊的數(shù)據(jù)內(nèi)容;
D. 數(shù)據(jù)倉庫中包含大量的綜合數(shù)據(jù),這些綜合數(shù)據(jù)會隨著時間的變化不斷地進(jìn)行重新綜合;
26.關(guān)于基本數(shù)據(jù)的元數(shù)據(jù)是指: (D)
A. 基本元數(shù)據(jù)與數(shù)據(jù)源,數(shù)據(jù)倉庫,數(shù)據(jù)集市和應(yīng)用程序等結(jié)構(gòu)相關(guān)的信息;
B. 基本元數(shù)據(jù)包括與企業(yè)相關(guān)的管理方面的數(shù)據(jù)和信息;
C. 基本元數(shù)據(jù)包括日志文件和簡歷執(zhí)行處理的時序調(diào)度信息;
D. 基本元數(shù)據(jù)包括關(guān)于裝載和更新處理,分析處理以及管理方面的信息;
27.下面關(guān)于數(shù)據(jù)粒度的描述不正確的是: (C)
A. 粒度是指數(shù)據(jù)倉庫小數(shù)據(jù)單元的詳細(xì)程度和級別;
B. 數(shù)據(jù)越詳細(xì),粒度就越小,級別也就越高;
C. 數(shù)據(jù)綜合度越高,粒度也就越大,級別也就越高;
D. 粒度的具體劃分將直接影響數(shù)據(jù)倉庫中的數(shù)據(jù)量以及查詢質(zhì)量.
28.在有關(guān)數(shù)據(jù)倉庫測試,下列說法不正確的是: (D)
A. 在完成數(shù)據(jù)倉庫的實施過程中,需要對數(shù)據(jù)倉庫進(jìn)行各種測試.測試工作中要包括單元測試和系統(tǒng)測試.
B. 當(dāng)數(shù)據(jù)倉庫的每個單獨組件完成后,就需要對他們進(jìn)行單元測試.
C. 系統(tǒng)的集成測試需要對數(shù)據(jù)倉庫的所有組件進(jìn)行大量的功能測試和回歸測試.
D. 在測試之前沒必要制定詳細(xì)的測試計劃.
29.OLAP技術(shù)的核心是: (D)
A. 在線性;
B. 對用戶的快速響應(yīng);
C. 互操作性.
D. 多維分析;
30.關(guān)于OLAP的特性,下面正確的是: (D)
(1)快速性 (2)可分析性 (3)多維性 (4)信息性 (5)共享性
A. (1) (2) (3)
B. (2) (3) (4)
C. (1) (2) (3) (4)
D. (1) (2) (3) (4) (5)
31.關(guān)于OLAP和OLTP的區(qū)別描述,不正確的是: (C)
A. OLAP主要是關(guān)于如何理解聚集的大量不同的數(shù)據(jù),它與OTAP應(yīng)用程序不同
B. 與OLAP應(yīng)用程序不同,OLTP應(yīng)用程序包含大量相對簡單的事務(wù)
C. OLAP的特點在于事務(wù)量大,但事務(wù)內(nèi)容比較簡單且重復(fù)率高
D. OLAP是以數(shù)據(jù)倉庫為基礎(chǔ)的,但其最終數(shù)據(jù)來源與OLTP一樣均來自底層的數(shù)據(jù)庫系統(tǒng),兩者面對的用戶是相同的
32.OLAM技術(shù)一般簡稱為“數(shù)據(jù)聯(lián)機(jī)分析挖掘”,下面說法正確的是: (D)
A. OLAP和OLAM都基于客戶機(jī)/服務(wù)器模式,只有后者有與用戶的交互性
B. 由于OLAM的立方體和用于OLAP的立方體有本質(zhì)的區(qū)別.
C. 基于WEB的OLAM是WEB技術(shù)與OLAM技術(shù)的結(jié)合.
D. OLAM服務(wù)器通過用戶圖形接口接收用戶的分析指令,在元數(shù)據(jù)的指導(dǎo)下,對超級立方體作一定的操作.
33.關(guān)于OLAP和OLTP的說法,下列不正確的是: (A)
A. OLAP事務(wù)量大,但事務(wù)內(nèi)容比較簡單且重復(fù)率高.
B. OLAP的最終數(shù)據(jù)來源與OLTP不一樣.
C. OLTP面對的是決策人員和高層管理人員.
D. OLTP以應(yīng)用為核心,是應(yīng)用驅(qū)動的.
34.設(shè)X={1,2,3}是頻繁項集,則可由X產(chǎn)生__(C)__個關(guān)聯(lián)規(guī)則。
A、4
B、5
C、6
D、7
35.頻繁項集、頻繁閉項集、最大頻繁項集之間的關(guān)系是: (C)
A、頻繁項集 頻繁閉項集=最大頻繁項集
B、頻繁項集=頻繁閉項集 最大頻繁項集
C、頻繁項集 頻繁閉項集 最大頻繁項集
D、頻繁項集=頻繁閉項集=最大頻繁項集
36.考慮下面的頻繁3-項集的集合:{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{2,3,4},{2,3,5},{3,4,5}假定數(shù)據(jù)集中只有5個項,采用合并策略,由候選產(chǎn)生過程得到4-項集不包含(C)
A、1,2,3,4
B、1,2,3,5
C、1,2,4,5
D、1,3,4,5
37.下面選項中t不是s的子序列的是 ( C )
A、s=<{2,4},{3,5,6},{8}> t=<{2},{3,6},{8}>
B、s=<{2,4},{3,5,6},{8}> t=<{2},{8}>
C、s=<{1,2},{3,4}> t=<{1},{2}>
D、s=<{2,4},{2,4}> t=<{2},{4}>
38.在圖集合中發(fā)現(xiàn)一組公共子結(jié)構(gòu),這樣的任務(wù)稱為 ( B )
A、頻繁子集挖掘
B、頻繁子圖挖掘
C、頻繁數(shù)據(jù)項挖掘
D、頻繁模式挖掘
39.下列度量不具有反演性的是 (D)
A、系數(shù)
B、幾率
C、Cohen度量
D、興趣因子
40.下列__(A)__不是將主觀信息加入到模式發(fā)現(xiàn)任務(wù)中的方法。
A、與同一時期其他數(shù)據(jù)對比
B、可視化
C、基于模板的方法
D、主觀興趣度量
41.下面購物籃能夠提取的3-項集的最大數(shù)量是多少(C)
ID 購買項
1 牛奶,啤酒,尿布
2 面包,黃油,牛奶
3 牛奶,尿布,餅干
4 面包,黃油,餅干
5 啤酒,餅干,尿布
6 牛奶,尿布,面包,黃油
7 面包,黃油,尿布
8 啤酒,尿布
9 牛奶,尿布,面包,黃油
10 啤酒,餅干
A、1
B、2
C、3
D、4
42.以下哪些算法是分類算法?(B)
A、DBSCAN
B、C4.5
C、K-Means
D、EM
43.以下哪些分類方法可以較好地避免樣本的不平衡問題? (A)
A,KNN
B,SVM
C,Bayes
44.決策樹中不包含以下哪種結(jié)點? (C)
A,根結(jié)點(root node)
B,內(nèi)部結(jié)點(internal node)
C,外部結(jié)點(external node)
D,葉結(jié)點(leaf node)
45.以下哪項關(guān)于決策樹的說法是錯誤的 (C)
A. 冗余屬性不會對決策樹的準(zhǔn)確率造成不利的影響
B. 子樹可能在決策樹中重復(fù)多次
C. 決策樹算法對于噪聲的干擾非常敏感
D. 尋找最佳決策樹是NP完全問題
46.在基于規(guī)則的分類器中,依據(jù)規(guī)則質(zhì)量的某種度量對規(guī)則排序,保證每一個測試記錄都是由覆蓋它的“最好的”規(guī)格來分類,這種方案稱為 (B)
A. 基于類的排序方案
B. 基于規(guī)則的排序方案
C. 基于度量的排序方案
D. 基于規(guī)格的排序方案。
47.以下哪些算法是基于規(guī)則的分類器 (A)
A. C4.5
B. KNN
C. Naive Bayes
D. ANN
48.如果規(guī)則集R中不存在兩條規(guī)則被同一條記錄觸發(fā),則稱R中的規(guī)則為(C);
A, 無序規(guī)則
B,窮舉規(guī)則
C,互斥規(guī)則
D,有序規(guī)則
49.如果對屬性值的任一組合,規(guī)則集R中都存在一條規(guī)則加以覆蓋,則稱R中的規(guī)則為(B)
A, 無序規(guī)則
B,窮舉規(guī)則
C,互斥規(guī)則
D,有序規(guī)則
50.如果規(guī)則集中的規(guī)則按照優(yōu)先級降序排列,則稱規(guī)則集是 (D)
A, 無序規(guī)則
B,窮舉規(guī)則
C,互斥規(guī)則
D,有序規(guī)則
51.如果允許一條記錄觸發(fā)多條分類規(guī)則,把每條被觸發(fā)規(guī)則的后件看作是對相應(yīng)類的一次投票,然后計票確定測試記錄的類標(biāo)號,稱為(A)
A, 無序規(guī)則
B,窮舉規(guī)則
C,互斥規(guī)則
D,有序規(guī)則
52.考慮兩隊之間的足球比賽:隊0和隊1。假設(shè)65%的比賽隊0勝出,剩余的比賽隊1獲勝。隊0獲勝的比賽中只有30%是在隊1的主場,而隊1取勝的比賽中75%是主場獲勝。如果下一場比賽在隊1的主場進(jìn)行,隊1獲勝的概率為 (C)
A,0.75
B,0.35
C,0.4678
D,0.5738
53.以下關(guān)于人工神經(jīng)網(wǎng)絡(luò)(ANN)的描述錯誤的有 (A)
A,神經(jīng)網(wǎng)絡(luò)對訓(xùn)練數(shù)據(jù)中的噪聲非常魯棒
B,可以處理冗余特征
C,訓(xùn)練ANN是一個很耗時的過程
D,至少含有一個隱藏層的多層神經(jīng)網(wǎng)絡(luò)
54.通過聚集多個分類器的預(yù)測來提高分類準(zhǔn)確率的技術(shù)稱為 (A)
A,組合(ensemble)
B,聚集(aggregate)
C,合并(combination)
D,投票(voting)
55.簡單地將數(shù)據(jù)對象集劃分成不重疊的子集,使得每個數(shù)據(jù)對象恰在一個子集中,這種聚類類型稱作( B )
A、層次聚類
B、劃分聚類
C、非互斥聚類
D、模糊聚類
56.在基本K均值算法里,當(dāng)鄰近度函數(shù)采用( A )的時候,合適的質(zhì)心是簇中各點的中位數(shù)。
A、曼哈頓距離
B、平方歐幾里德距離
C、余弦距離
D、Bregman散度
57.( C )是一個觀測值,它與其他觀測值的差別如此之大,以至于懷疑它是由不同的機(jī)制產(chǎn)生的。
A、邊界點
B、質(zhì)心
C、離群點
D、核心點
58.BIRCH是一種( B )。
A、分類器
B、聚類算法
C、關(guān)聯(lián)分析算法
D、特征選擇算法
59.檢測一元正態(tài)分布中的離群點,屬于異常檢測中的基于( A )的離群點檢測。
A、統(tǒng)計方法
B、鄰近度
C、密度
D、聚類技術(shù)
60.( C )將兩個簇的鄰近度定義為不同簇的所有點對的平均逐對鄰近度,它是一種凝聚層次聚類技術(shù)。
A、MIN(單鏈)
B、MAX(全鏈)
C、組平均
D、Ward方法
二、多選題
61.尋找數(shù)據(jù)集中的關(guān)系是為了尋找精確、方便并且有價值地總結(jié)了數(shù)據(jù)的某一特征的表示,這個過程包括了以下哪些步驟? (A B C D)
A. 決定要使用的表示的特征和結(jié)構(gòu)
B. 決定如何量化和比較不同表示擬合數(shù)據(jù)的好壞
C. 選擇一個算法過程使評分函數(shù)最優(yōu)
D. 決定用什么樣的數(shù)據(jù)管理原則以高效地實現(xiàn)算法。
62.數(shù)據(jù)挖掘的預(yù)測建模任務(wù)主要包括哪幾大類問題? (A B)
A. 分類
B. 回歸
C. 模式發(fā)現(xiàn)
D. 模式匹配
63.數(shù)據(jù)挖掘算法的組件包括:(A B C D)
A. 模型或模型結(jié)構(gòu)
B. 評分函數(shù)
C. 優(yōu)化和搜索方法
D. 數(shù)據(jù)管理策略
64.下列何種算法可以幫助我們做數(shù)值的預(yù)測(Prediction)?(B,D)
A.Apriori B.Decision Tree C.Naive Bayes D.Linear Regression
65.在現(xiàn)實世界的數(shù)據(jù)中,元組在某些屬性上缺少值是常有的。描述處理該問題的各種方法有: (ABCD )
A忽略元組
B使用屬性的平均值填充空缺值
C使用一個全局常量填充空缺值
D使用與給定元組屬同一類的所有樣本的平均值
66. 時間序列的問題需考慮下列何者?(A, C, D)
A.季節(jié)性 B.地點 C.時間 D.趨勢
67.對于數(shù)據(jù)挖掘中的原始數(shù)據(jù),存在的問題有: (ABCD)
A 不一致
B重復(fù)
C不完整
D 含噪聲
68.下列屬于不同的有序數(shù)據(jù)的有:(ABC)
A 時序數(shù)據(jù)
B 序列數(shù)據(jù)
C時間序列數(shù)據(jù)
D事務(wù)數(shù)據(jù)
69.下面屬于數(shù)據(jù)集的一般特性的有: (B C D)
A 連續(xù)性
B 維度
C 稀疏性
D 分辨率
70.下面屬于維歸約常用的線性代數(shù)技術(shù)的有: (A C)
A 主成分分析
B 特征提取
C 奇異值分解
D 特征加權(quán)
71.下面列出的條目中,哪些是數(shù)據(jù)倉庫的基本特征: (ACD)
A. 數(shù)據(jù)倉庫是面向主題的
B. 數(shù)據(jù)倉庫的數(shù)據(jù)是集成的
C. 數(shù)據(jù)倉庫的數(shù)據(jù)是相對穩(wěn)定的
D. 數(shù)據(jù)倉庫的數(shù)據(jù)是反映歷史變化的
72.以下各項均是針對數(shù)據(jù)倉庫的不同說法,你認(rèn)為正確的有(BCD)。
A.數(shù)據(jù)倉庫就是數(shù)據(jù)庫
B.數(shù)據(jù)倉庫是一切商業(yè)智能系統(tǒng)的基礎(chǔ)
C.數(shù)據(jù)倉庫是面向業(yè)務(wù)的,支持聯(lián)機(jī)事務(wù)處理(OLTP)
D.數(shù)據(jù)倉庫支持決策而非事務(wù)處理
73.數(shù)據(jù)倉庫在技術(shù)上的工作過程是: (ABCD)
A. 數(shù)據(jù)的抽取
B. 存儲和管理
C. 數(shù)據(jù)的表現(xiàn)
D. 數(shù)據(jù)倉庫設(shè)計
74.聯(lián)機(jī)分析處理包括以下哪些基本分析功能? (BCD)
A. 聚類
B. 切片
C. 轉(zhuǎn)軸
D. 切塊
75.利用Apriori算法計算頻繁項集可以有效降低計算頻繁集的時間復(fù)雜度。在以下的購物籃中產(chǎn)生支持度不小于3的候選3-項集,在候選2-項集中需要剪枝的是(BD)
立刻掃碼
看更多數(shù)據(jù)分析師認(rèn)證試題
——學(xué)數(shù)據(jù)分析技能一定要了解的大廠入門券,CDA數(shù)據(jù)分析師認(rèn)證證書!
CDA(數(shù)據(jù)分析師認(rèn)證),與CFA相似,由國際范圍內(nèi)數(shù)據(jù)科學(xué)領(lǐng)域行業(yè)專家、學(xué)者及知名企業(yè)共同制定并修訂更新,迅速發(fā)展成行業(yè)內(nèi)長期而穩(wěn)定的全球大數(shù)據(jù)及數(shù)據(jù)分析人才標(biāo)準(zhǔn),具有專業(yè)化、科學(xué)化、國際化、系統(tǒng)化等特性。
同時,CDA全棧考試布局和認(rèn)證體系已得到社會認(rèn)可,并由為IBM、華為等提供全球認(rèn)證服務(wù)的Pearson VUE面向全球提供靈活的考試服務(wù)。
報名方式
登錄CDA認(rèn)證考試官網(wǎng)注冊報名>>點擊報名
報名費用
Level Ⅰ:1200 RMB
Level Ⅱ:1700 RMB
Level Ⅲ:2000 RMB
考試地點
Level Ⅰ + Level Ⅱ:中國區(qū)30+省市,70+城市,250+考場,考生可就近考場預(yù)約考試 >看看我所在的地哪里報名<
Level Ⅲ:中國區(qū)30所城市,北京/上海/天津/重慶/成都/深圳/廣州/濟(jì)南/南京/杭州/蘇州/福州/太原/武漢/長沙/西安/貴陽/鄭州/南寧/昆明/烏魯木齊/沈陽/哈爾濱/合肥/石家莊/呼和浩特/南昌/長春/大連/蘭州>看看我所在的地哪里報名<
報考條件
CDA Level I >了解更多<
? 報考條件:無要求。
CDA Level II >了解更多<
? 報考條件:獲得CDA Level Ⅰ認(rèn)證證書;
? 考試時間:隨報隨考。
CDA Level III >了解更多<
? 報考條件:獲得CDA Level Ⅱ認(rèn)證證書;
? 考試時間:一年四屆 3月、6月、9月、12月的最后一個周六。
——熱門課程推薦:
想學(xué)習(xí)PYTHON數(shù)據(jù)分析與金融數(shù)字化轉(zhuǎn)型精英訓(xùn)練營,您可以點擊>>>“人才轉(zhuǎn)型”了解課程詳情;
想從事業(yè)務(wù)型數(shù)據(jù)分析師,您可以點擊>>>“數(shù)據(jù)分析師”了解課程詳情;
想從事大數(shù)據(jù)分析師,您可以點擊>>>“大數(shù)據(jù)就業(yè)”了解課程詳情;
想成為人工智能工程師,您可以點擊>>>“人工智能就業(yè)”了解課程詳情;
想了解Python數(shù)據(jù)分析,您可以點擊>>>“Python數(shù)據(jù)分析師”了解課程詳情;
想咨詢互聯(lián)網(wǎng)運(yùn)營,你可以點擊>>>“互聯(lián)網(wǎng)運(yùn)營就業(yè)班”了解課程詳情;
更多考試介紹及備考福利請點擊:CDA 認(rèn)證考試中心官網(wǎng)
推薦學(xué)習(xí)書籍
《CDA一級教材》適合CDA一級考生備考,也適合業(yè)務(wù)及數(shù)據(jù)分析崗位的從業(yè)者提升自我。完整電子版已上線CDA網(wǎng)校,累計已有10萬+在讀~
免費加入閱讀:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學(xué)領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學(xué)計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學(xué)計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務(wù)價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導(dǎo)向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10CDA 數(shù)據(jù)分析師:商業(yè)數(shù)據(jù)分析實踐的落地者與價值創(chuàng)造者 商業(yè)數(shù)據(jù)分析的價值,最終要在 “實踐” 中體現(xiàn) —— 脫離業(yè)務(wù)場景的分 ...
2025-09-10機(jī)器學(xué)習(xí)解決實際問題的核心關(guān)鍵:從業(yè)務(wù)到落地的全流程解析 在人工智能技術(shù)落地的浪潮中,機(jī)器學(xué)習(xí)作為核心工具,已廣泛應(yīng)用于 ...
2025-09-09SPSS 編碼狀態(tài)區(qū)域中 Unicode 的功能與價值解析 在 SPSS(Statistical Product and Service Solutions,統(tǒng)計產(chǎn)品與服務(wù)解決方案 ...
2025-09-09