
各種編程語言的深度學(xué)習(xí)庫整理大全!
1. Theano是一個python類庫,用數(shù)組向量來定義和計(jì)算數(shù)學(xué)表達(dá)式。它使得在Python環(huán)境下編寫深度學(xué)習(xí)算法變得簡單。在它基礎(chǔ)之上還搭建了許多類庫。
1.Keras是一個簡潔、高度模塊化的神經(jīng)網(wǎng)絡(luò)庫,它的設(shè)計(jì)參考了Torch,用Python語言編寫,支持調(diào)用GPU和CPU優(yōu)化后的Theano運(yùn)算。
2.Pylearn2是一個集成大量深度學(xué)習(xí)常見模型和訓(xùn)練算法的庫,如隨機(jī)梯度下降等。它的功能庫都是基于Theano之上。
3.Lasagne是一個搭建和訓(xùn)練神經(jīng)網(wǎng)絡(luò)的輕量級封裝庫,基于Theano。它遵循簡潔化、透明化、模塊化、實(shí)用化和專一化的原則。
4.Blocks也是一個基于Theano的幫助搭建神經(jīng)網(wǎng)絡(luò)的框架。
2. Caffe是深度學(xué)習(xí)的框架,它注重于代碼的表達(dá)形式、運(yùn)算速度以及模塊化程度。它是由伯克利視覺和學(xué)習(xí)中心(Berkeley Vision and Learning Center, BVLC)以及社區(qū)成員共同開發(fā)。谷歌的DeepDream項(xiàng)目就是基于Caffe框架完成。這個框架是使用BSD許可證的C++庫,并提供了Python調(diào)用接口。
3. nolearn囊括了大量的現(xiàn)有神經(jīng)網(wǎng)絡(luò)函數(shù)庫的封裝和抽象接口、大名鼎鼎的Lasagne以及一些機(jī)器學(xué)習(xí)的常用模塊。
4. Genism也是一個用Python編寫的深度學(xué)習(xí)小工具,采用高效的算法來處理大規(guī)模文本數(shù)據(jù)。
5. Chainer在深度學(xué)習(xí)的理論算法和實(shí)際應(yīng)用之間架起一座橋梁。它的特點(diǎn)是強(qiáng)大、靈活、直觀,被認(rèn)為是深度學(xué)習(xí)的靈活框架。
6. deepnet是基于GPU的深度學(xué)習(xí)算法函數(shù)庫,使用Python語言開發(fā),實(shí)現(xiàn)了前饋神經(jīng)網(wǎng)絡(luò)(FNN)、受限玻爾茲曼機(jī)(RBM)、深度信念網(wǎng)絡(luò)(DBN)、自編碼器(AE)、深度玻爾茲曼機(jī)(DBM)和卷積神經(jīng)網(wǎng)絡(luò)(CNN)等算法。
7. Hebel也是深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)的一個Python庫,它通過pyCUDA控制支持CUDA的GPU加速。它實(shí)現(xiàn)了最重要的幾類神經(jīng)網(wǎng)絡(luò)模型,提供了多種激活函數(shù)和模型訓(xùn)練方法,例如momentum、Nesterov momentum、dropout、和early stopping等方法。
8. CXXNET是一個基于MShadow開發(fā)的快速、簡潔的分布式深度學(xué)習(xí)框架。它是一個輕量級、易擴(kuò)展的C++/CUDA神經(jīng)網(wǎng)絡(luò)工具箱,提供友好的Python/Matlab接口來進(jìn)行訓(xùn)練和預(yù)測。
9. DeepPy是基于NumPy的深度學(xué)習(xí)框架。
10. DeepLearning是一個用C++和Python共同開發(fā)的深度學(xué)習(xí)函數(shù)庫。
11. Neon是Nervana System 的深度學(xué)習(xí)框架,使用Python開發(fā)。
1. ConvNet 卷積神經(jīng)網(wǎng)絡(luò)是一類深度學(xué)習(xí)分類算法,它可以從原始數(shù)據(jù)中自主學(xué)習(xí)有用的特征,通過調(diào)節(jié)權(quán)重值來實(shí)現(xiàn)。
2. DeepLearnToolBox是用于深度學(xué)習(xí)的Matlab/Octave工具箱,它包含深度信念網(wǎng)絡(luò)(DBN)、棧式自編碼器(stacked AE)、卷積神經(jīng)網(wǎng)絡(luò)(CNN)等算法。
3. cuda-convet是一套卷積神經(jīng)網(wǎng)絡(luò)(CNN)代碼,也適用于前饋神經(jīng)網(wǎng)絡(luò),使用C++/CUDA進(jìn)行運(yùn)算。它能對任意深度的多層神經(jīng)網(wǎng)絡(luò)建模。只要是有向無環(huán)圖的網(wǎng)絡(luò)結(jié)構(gòu)都可以。訓(xùn)練過程采用反向傳播算法(BP算法)。
4. MatConvNet是一個面向計(jì)算機(jī)視覺應(yīng)用的卷積神經(jīng)網(wǎng)絡(luò)(CNN)Matlab工具箱。它簡單高效,能夠運(yùn)行和學(xué)習(xí)最先進(jìn)的機(jī)器學(xué)習(xí)算法。
1. eblearn是開源的機(jī)器學(xué)習(xí)C++封裝庫,由Yann LeCun主導(dǎo)的紐約大學(xué)機(jī)器學(xué)習(xí)實(shí)驗(yàn)室開發(fā)。它用基于能量的模型實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò),并提供可視化交互界面(GUI)、示例以及示范教程。
2. SINGA是Apache軟件基金會支持的一個項(xiàng)目,它的設(shè)計(jì)目標(biāo)是在現(xiàn)有系統(tǒng)上提供通用的分布式模型訓(xùn)練算法。
3. NVIDIA DIGITS是用于開發(fā)、訓(xùn)練和可視化深度神經(jīng)網(wǎng)絡(luò)的一套新系統(tǒng)。它把深度學(xué)習(xí)的強(qiáng)大功能用瀏覽器界面呈現(xiàn)出來,使得數(shù)據(jù)科學(xué)家和研究員可以實(shí)時(shí)地可視化神經(jīng)網(wǎng)絡(luò)行為,快速地設(shè)計(jì)出最適合數(shù)據(jù)的深度神經(jīng)網(wǎng)絡(luò)。
4. Intel? Deep Learning Framework提供了Intel?平臺加速深度卷積神經(jīng)網(wǎng)絡(luò)的一個統(tǒng)一平臺。
1. N-Dimensional Arrays for Java (ND4J) 是JVM平臺的科學(xué)計(jì)算函數(shù)庫。它主要用于產(chǎn)品中,也就是說函數(shù)的設(shè)計(jì)需求是運(yùn)算速度快、存儲空間最省。
2. Deeplearning4j 是第一款商業(yè)級別的開源分布式深度學(xué)習(xí)類庫,用Java和Scala編寫。它的設(shè)計(jì)目的是為了在商業(yè)環(huán)境下使用,而不是作為一款研究工具。
3. Encog是一個機(jī)器學(xué)習(xí)的高級框架,涵蓋支持向量機(jī)、人工神經(jīng)網(wǎng)絡(luò)、遺傳編程、貝葉斯網(wǎng)絡(luò)、隱馬可夫模型等,也支持遺傳算法。
1. Convnet.js 由JavaScript編寫,是一個完全在瀏覽器內(nèi)完成訓(xùn)練深度學(xué)習(xí)模型(主要是神經(jīng)網(wǎng)絡(luò))的封裝庫。不需要其它軟件,不需要編譯器,不需要安裝包,不需要GPU,甚至不費(fèi)吹灰之力。
1. Torch是一款廣泛適用于各種機(jī)器學(xué)習(xí)算法的科學(xué)計(jì)算框架。它使用容易,用快速的腳本語言LuaJit開發(fā),底層是C/CUDA實(shí)現(xiàn)。Torch基于Lua編程語言。
1. Mocha是Julia的深度學(xué)習(xí)框架,受C++框架Caffe的啟發(fā)。Mocha中通用隨機(jī)梯度求解程序和通用模塊的高效實(shí)現(xiàn),可以用來訓(xùn)練深度/淺層(卷積)神經(jīng)網(wǎng)絡(luò),可以通過(棧式)自編碼器配合非監(jiān)督式預(yù)訓(xùn)練(可選)完成。它的優(yōu)勢特性包括模塊化結(jié)構(gòu)、提供上層接口,可能還有速度、兼容性等更多特性。
1. Lush(Lisp Universal Shell)是一種面向?qū)ο蟮木幊陶Z言,面向?qū)Υ笠?guī)模數(shù)值和圖形應(yīng)用感興趣的廣大研究員、實(shí)驗(yàn)員和工程師們。它擁有機(jī)器學(xué)習(xí)的函數(shù)庫,其中包含豐富的深度學(xué)習(xí)庫。
1. DNNGraph是Haskell用于深度神經(jīng)網(wǎng)絡(luò)模型生成的領(lǐng)域特定語言(DSL)。
1. Accord.NET 是完全用C#編寫的.NET機(jī)器學(xué)習(xí)框架,包括音頻和圖像處理的類庫。它是產(chǎn)品級的完整框架,用于計(jì)算機(jī)視覺、計(jì)算機(jī)音頻、信號處理和統(tǒng)計(jì)應(yīng)用領(lǐng)域。
1. darch包可以用來生成多層神經(jīng)網(wǎng)絡(luò)(深度結(jié)構(gòu))。訓(xùn)練的方法包括了對比散度的預(yù)訓(xùn)練和眾所周知的訓(xùn)練算法(如反向傳播法或共軛梯度法)的細(xì)調(diào)。
2. deepnet實(shí)現(xiàn)了許多深度學(xué)習(xí)框架和神經(jīng)網(wǎng)絡(luò)算法,包括反向傳播(BP)、受限玻爾茲曼機(jī)(RBM)、深度信念網(wǎng)絡(luò)(DBP)、深度自編碼器(Deep autoencoder)等等。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
LSTM 模型輸入長度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報(bào)考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動決策的時(shí)代浪潮下,CDA 數(shù)據(jù)分析師認(rèn)證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計(jì)的實(shí)用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強(qiáng)大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實(shí)施重大更新。 此次更新旨在確保認(rèn) ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價(jià)值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時(shí)代,BI ...
2025-07-10SQL 在預(yù)測分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢預(yù)判? ? 在數(shù)據(jù)驅(qū)動決策的時(shí)代,預(yù)測分析作為挖掘數(shù)據(jù)潛在價(jià)值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價(jià)值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點(diǎn),而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報(bào)考到取證的全攻略? 在數(shù)字經(jīng)濟(jì)蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢性檢驗(yàn):捕捉數(shù)據(jù)背后的時(shí)間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢性檢驗(yàn)如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時(shí)間維度的精準(zhǔn)切片? ? 在數(shù)據(jù)的世界里,時(shí)間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準(zhǔn) ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實(shí)戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認(rèn)證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗(yàn):數(shù)據(jù)趨勢與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準(zhǔn)確捕捉數(shù)據(jù)的趨勢變化以及識別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認(rèn)證作為國內(nèi)權(quán)威的數(shù)據(jù)分析能力認(rèn)證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對策略? 長短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨(dú)特的門控機(jī)制,在 ...
2025-07-07統(tǒng)計(jì)學(xué)方法在市場調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場調(diào)研是企業(yè)洞察市場動態(tài)、了解消費(fèi)者需求的重要途徑,而統(tǒng)計(jì)學(xué)方法則是市場調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當(dāng)下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準(zhǔn)確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價(jià)值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03