
從數(shù)據(jù)分析師考試之筆試試題看職業(yè)要求
一、異常值是指什么?請列舉1種識(shí)別連續(xù)型變量異常值的方法?
異常值(Outlier) 是指樣本中的個(gè)別值,其數(shù)值明顯偏離所屬樣本的其余觀測值。在數(shù)理統(tǒng)計(jì)里一般是指一組觀測值中與平均值的偏差超過兩倍標(biāo)準(zhǔn)差的測定值。
Grubbs’ test(是以Frank E. Grubbs命名的),又叫maximum normed residual test,是一種用于單變量數(shù)據(jù)集異常值識(shí)別的統(tǒng)計(jì)檢測,它假定數(shù)據(jù)集來自正態(tài)分布的總體。
未知總體標(biāo)準(zhǔn)差σ,在五種檢驗(yàn)法中,優(yōu)劣次序?yàn)椋簍檢驗(yàn)法、格拉布斯檢驗(yàn)法、峰度檢驗(yàn)法、狄克遜檢驗(yàn)法、偏度檢驗(yàn)法。
點(diǎn)評:考察的內(nèi)容是統(tǒng)計(jì)學(xué)基礎(chǔ)功底。
二、什么是聚類分析?聚類算法有哪幾種?請選擇一種詳細(xì)描述其計(jì)算原理和步驟。
聚類分析(cluster analysis)是一組將研究對象分為相對同質(zhì)的群組(clusters)的統(tǒng)計(jì)分析技術(shù)。 聚類分析也叫分類分析(classification analysis)或數(shù)值分類(numerical taxonomy)。聚類與分類的不同在于,聚類所要求劃分的類是未知的。
聚類分析計(jì)算方法主要有: 層次的方法(hierarchical method)、劃分方法(partitioning method)、基于密度的方法(density-based method)、基于網(wǎng)格的方法(grid-based method)、基于模型的方法(model-based method)等。其中,前兩種算法是利用統(tǒng)計(jì)學(xué)定義的距離進(jìn)行度量。
k-means 算法的工作過程說明如下:首先從n個(gè)數(shù)據(jù)對象任意選擇 k 個(gè)對象作為初始聚類中心;而對于所剩下其它對象,則根據(jù)它們與這些聚類中心的相似度(距離),分別將它們分配給與其最相似的(聚類中心所代表的)聚類;然 后再計(jì)算每個(gè)所獲新聚類的聚類中心(該聚類中所有對象的均值);不斷重復(fù)這一過程直到標(biāo)準(zhǔn)測度函數(shù)開始收斂為止。一般都采用均方差作為標(biāo)準(zhǔn)測度函數(shù). k個(gè)聚類具有以下特點(diǎn):各聚類本身盡可能的緊湊,而各聚類之間盡可能的分開。
其流程如下:
(1)從 n個(gè)數(shù)據(jù)對象任意選擇 k 個(gè)對象作為初始聚類中心;
(2)根據(jù)每個(gè)聚類對象的均值(中心對象),計(jì)算每個(gè)對象與這些中心對象的距離;并根據(jù)最小距離重新對相應(yīng)對象進(jìn)行劃分;
(3)重新計(jì)算每個(gè)(有變化)聚類的均值(中心對象);
(4)循環(huán)(2)、(3)直到每個(gè)聚類不再發(fā)生變化為止(標(biāo)準(zhǔn)測量函數(shù)收斂)。
優(yōu)點(diǎn):本算法確定的K 個(gè)劃分到達(dá)平方誤差最小。當(dāng)聚類是密集的,且類與類之間區(qū)別明顯時(shí),效果較好。對于處理大數(shù)據(jù)集,這個(gè)算法是相對可伸縮和高效的,計(jì)算的復(fù)雜度為 O(NKt),其中N是數(shù)據(jù)對象的數(shù)目,t是迭代的次數(shù)。一般來說,K<<N,t<<N 。
缺點(diǎn):1. K 是事先給定的,但非常難以選定;2. 初始聚類中心的選擇對聚類結(jié)果有較大的影響。
點(diǎn)評:考察的內(nèi)容是常用數(shù)據(jù)分析方法,做數(shù)據(jù)分析一定要理解數(shù)據(jù)分析算法、應(yīng)用場景、使用過程、以及優(yōu)缺點(diǎn)。
三、根據(jù)要求寫出SQL
表A結(jié)構(gòu)如下:
Member_ID (用戶的ID,字符型)
Log_time (用戶訪問頁面時(shí)間,日期型(只有一天的數(shù)據(jù)))
URL (訪問的頁面地址,字符型)
要求:提取出每個(gè)用戶訪問的第一個(gè)URL(按時(shí)間最早),形成一個(gè)新表(新表名為B,表結(jié)構(gòu)和表A一致)
create table B as select Member_ID, min(Log_time), URL from A group by Member_ID ;
點(diǎn)評:SQL語句,簡單的數(shù)據(jù)獲取能力,包括表查詢、關(guān)聯(lián)、匯總、函數(shù)等。
另外,這個(gè)答案其實(shí)是不對的,實(shí)現(xiàn)有很多方法,就不貼出來了,大家自己去發(fā)揮吧。
四、銷售數(shù)據(jù)分析
以下是一家B2C電子商務(wù)網(wǎng)站的一周銷售數(shù)據(jù),該網(wǎng)站主要用戶群是辦公室女性,銷售額主要集中在5種產(chǎn)品上,如果你是這家公司的分析師,
a) 從數(shù)據(jù)中,你看到了什么問題?你覺得背后的原因是什么?
b) 如果你的老板要求你提出一個(gè)運(yùn)營改進(jìn)計(jì)劃,你會(huì)怎么做?
表如下:一組每天某網(wǎng)站的銷售數(shù)據(jù)
a) 從這一周的數(shù)據(jù)可以看出,周末的銷售額明顯偏低。這其中的原因,可以從兩個(gè)角度來看:站在消費(fèi)者的角度,周末可能不用上班,因而也沒有購買該產(chǎn)品的欲望;站在產(chǎn)品的角度來看,該產(chǎn)品不能在周末的時(shí)候引起消費(fèi)者足夠的注意力。
b) 針對該問題背后的兩方面原因,我的運(yùn)營改進(jìn)計(jì)劃也分兩方面:一是,針對消費(fèi)者周末沒有購買欲望的心理,進(jìn)行引導(dǎo)提醒消費(fèi)者周末就應(yīng)該準(zhǔn)備好該產(chǎn)品;二是,通過該產(chǎn)品的一些類似于打折促銷等活動(dòng)來提升該產(chǎn)品在周末的人氣和購買力。
點(diǎn)評:數(shù)據(jù)解讀能力,獲取數(shù)據(jù)是基本功,僅僅有數(shù)據(jù)獲取能力是不夠的,其次是對數(shù)據(jù)的解讀能力。
五、用戶調(diào)研
某公司針對A、B、C三類客戶,提出了一種統(tǒng)一的改進(jìn)計(jì)劃,用于提升客戶的周消費(fèi)次數(shù),需要你來制定一個(gè)事前試驗(yàn)方案,來支持決策,請你思考下列問題:
a) 試驗(yàn)需要為決策提供什么樣的信息?
c) 按照上述目的,請寫出你的數(shù)據(jù)抽樣方法、需要采集的數(shù)據(jù)指標(biāo)項(xiàng),以及你選擇的統(tǒng)計(jì)方法。
a) 試驗(yàn)要能證明該改進(jìn)計(jì)劃能顯著提升A、B、C三類客戶的周消費(fèi)次數(shù)。
b) 根據(jù)三類客戶的數(shù)量,采用分層比例抽樣;
需要采集的數(shù)據(jù)指標(biāo)項(xiàng)有:客戶類別,改進(jìn)計(jì)劃前周消費(fèi)次數(shù),改進(jìn)計(jì)劃后周消費(fèi)次數(shù);
選用統(tǒng)計(jì)方法為:分別針對A、B、C三類客戶,進(jìn)行改進(jìn)前和后的周消費(fèi)次數(shù)的,兩獨(dú)立樣本T-檢驗(yàn)(two-sample t-test)。
點(diǎn)評:業(yè)務(wù)理解能力和數(shù)據(jù)分析思路,這是數(shù)據(jù)分析的核心競爭力。
綜上所述:一個(gè)合格的數(shù)據(jù)分析應(yīng)該具備統(tǒng)計(jì)學(xué)基礎(chǔ)知識(shí)、數(shù)據(jù)分析方法、數(shù)據(jù)獲取、數(shù)據(jù)解讀和業(yè)務(wù)理解、數(shù)據(jù)分析思想幾個(gè)方面能力。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營問題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價(jià)值 在數(shù)據(jù)驅(qū)動(dòng)決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實(shí)踐到業(yè)務(wù)價(jià)值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價(jià)值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10