
十個(gè)段子反思大數(shù)據(jù)
自2011年以來,大數(shù)據(jù)旋風(fēng)以“迅雷不及掩耳之勢(shì)”席卷中國(guó)。毋庸置疑,大數(shù)據(jù)已然成為繼云計(jì)算、物聯(lián)網(wǎng)之后新一輪的技術(shù)變革熱潮,不僅是信息領(lǐng)域,經(jīng)濟(jì)、政治、社會(huì)等諸多領(lǐng)域都“磨刀霍霍”向大數(shù)據(jù),準(zhǔn)備在其中逐得一席之地。
中國(guó)工程院 李國(guó)杰院士更是把大數(shù)據(jù)提升到戰(zhàn)略的高度,他表示數(shù)據(jù)是與物質(zhì)、能源一樣重要的戰(zhàn)略資源。從數(shù)據(jù)中發(fā)現(xiàn)價(jià)值的技術(shù)正是最有活力的軟技術(shù),在數(shù)據(jù)技術(shù)與產(chǎn)業(yè)上的落后,將使我們像錯(cuò)過工業(yè)革命機(jī)會(huì)一樣延誤一個(gè)時(shí)代。
在這樣的認(rèn)知下,“大數(shù)據(jù)”日趨變成大家“耳熟能詳”的熱詞。圖1所示的是谷歌趨勢(shì)(Google Trends)顯示的有關(guān)大數(shù)據(jù)熱度的趨勢(shì),從圖1中可以看到,在未來的數(shù)年里,“大數(shù)據(jù)”的熱度可能還是“高燒不退”。
在大數(shù)據(jù)熱火朝天前行的路上,多一點(diǎn)反思,多一份冷靜,或許能讓這路走的更好、更遠(yuǎn)?例如,2014年4月,大名鼎鼎的《紐約時(shí)報(bào)》發(fā)表題為《大數(shù)據(jù)帶來的八個(gè)(不,是九個(gè)?。﹩栴}》(Eight (No, Nine!) Problems With Big Data)的反思文章,其中文中的第九個(gè)問題,就是所謂的“大數(shù)據(jù)的炒作(we almost forgot one last problem: the hype)”。同樣為重量級(jí)的英國(guó)報(bào)刊《財(cái)經(jīng)時(shí)報(bào)》(Financial Times,F(xiàn)T)也刊發(fā)了類似反思式的文章“大數(shù)據(jù):我們正在犯大錯(cuò)誤嗎?
在大數(shù)據(jù)熱炒之中,大數(shù)據(jù)的價(jià)值是否被夸大了?是否存在人造的“心靈雞湯”?大數(shù)據(jù)技術(shù)便利帶來的“收之桑榆”,是否也存在自己的副作用——“失之東隅”——個(gè)人的隱私何以得到保障?大數(shù)據(jù)熱炒的“繁華過盡”,數(shù)據(jù)背后的巨大價(jià)值是否還能“溫潤(rùn)依舊”?在眾聲喧嘩之中,我們需要冷靜審慎地思考上述問題。
太多的“唐僧式”的說教,會(huì)讓很多人感到無趣。下文分享了10個(gè)從“天南地北”收集而來的小故事(或稱段子),從這些小故事中,可對(duì)熱炒的大數(shù)據(jù)反思一下,這或許能讓讀者更加客觀地看待大數(shù)據(jù)。有些小故事與結(jié)論之間的對(duì)應(yīng)關(guān)系,或許不是那么妥帖,諸位別太較真,讀一讀、樂一樂、想一想就好!
故事01:醉漢路燈下找鑰匙——大數(shù)據(jù)的研究方法可笑嗎?
一天晚上,一個(gè)醉漢在路燈下不停地轉(zhuǎn)來轉(zhuǎn)去,警察就問他在找什么。醉漢說,我的鑰匙丟了。于是,警察幫他一起找,結(jié)果路燈周圍找了幾遍都沒找到。于是警察就問,你確信你的鑰匙是丟到這兒?jiǎn)??醉漢說,不確信啊,我壓根就不知道我的鑰匙丟到哪兒。警察怒從心中來,問,那你到這里來找什么?醉漢振振有辭:因?yàn)橹挥羞@里有光線??!
但不好笑的是,“烏鴉笑豬黑,自己不覺得”,這個(gè)故事也揭示了一個(gè)事實(shí):在面臨復(fù)雜問題時(shí),我們的思維方式也常同這個(gè)醉漢所差無幾,同樣也是先在自己熟悉的范圍和領(lǐng)域內(nèi)尋找答案,哪怕這個(gè)答案和自己的領(lǐng)域“相隔萬里”!
還有人甚至認(rèn)為,醉漢找鑰匙的行為,恰恰就是科學(xué)研究所遵循的哲學(xué)觀。前人的研究成果,恰是是后人研究的基石,也即這則故事中的“路燈”。到路燈下找鑰匙,雖看來有些荒唐,但也是“無奈之下”的明智之舉。
數(shù)據(jù)那么大,價(jià)值密度那么低,你也可以去分析,但從何分析起?首先想到的方法和工具,難道不是當(dāng)下你最熟悉的?而你最熟悉的,就能確保它就是最好的嗎?
沃頓商學(xué)院著名教授、紐約時(shí)報(bào)最佳暢銷書作者 喬納·伯杰(Jonah Berger)從另外一個(gè)角度,解讀這個(gè)故事:在這里,浩瀚的黑夜就是如同全數(shù)據(jù),“鑰匙”就好比是大數(shù)據(jù)分析中我們要找到的價(jià)值目標(biāo),他認(rèn)為,“路燈”就好比我們要達(dá)到這個(gè)目標(biāo)的測(cè)量“標(biāo)尺”,如果這個(gè)標(biāo)尺的導(dǎo)向有問題,順著這個(gè)標(biāo)尺導(dǎo)引,想要找到心儀的“鑰匙”,是非常困難的!在我們癡迷于某項(xiàng)自己熟悉的特定測(cè)量標(biāo)尺之前,一定要提前審視一下,這個(gè)測(cè)量標(biāo)尺是否適合幫助我們找到那把“鑰匙”,如果不能,趕快換一盞“街燈”吧!
如果在黑暗中丟失的鑰匙,是大數(shù)據(jù)中的價(jià)值,那這個(gè)價(jià)值也太稀疏了吧。下面的故事,讓我們聊聊大數(shù)據(jù)的價(jià)值。
故事02:顛簸的街道——對(duì)不起 “n=All” 只是一個(gè)幻覺
波士頓市ZF推薦自己的市民,使用一款智能手機(jī)應(yīng)用——“顛簸的街道(Street Bump,網(wǎng)站訪問鏈接:http://www.streetbump.org/)”。這個(gè)應(yīng)用程序,可利用智能手機(jī)中內(nèi)置的加速度傳感器,來檢查出街道上的坑洼之處——在路面平穩(wěn)的地方,傳感器加速度值小,而在坑坑洼洼的地方,傳感器加速度值就大。熱心的波士頓市民們,只要下載并使用這個(gè)應(yīng)用程序后,開著車、帶著手機(jī),他們就是一名義務(wù)的、兼職的市政工人,這樣就可以輕易做到“全民皆市政”。市政廳全職的工作人員就無需親自巡查道路,而是打開電腦,就能一目了然的看到哪些道路損壞嚴(yán)重,哪里需要維修。
波士頓市ZF也因此驕傲地宣布,“大數(shù)據(jù),為這座城市提供了實(shí)時(shí)的信息,它幫助我們解決問題,并提供了長(zhǎng)期的投資計(jì)劃”。著名期刊《連線》(Wired)也毫不吝嗇它的溢美之詞:這是眾包(Crowdsourcing)改善ZF功能的典范之作。
眾包是《連線》雜志記者Jeff Howe于2006年發(fā)明的一個(gè)專業(yè)術(shù)語,用來描述一種新的商業(yè)模式。它以自由自愿的形式外包給非特定的大眾網(wǎng)絡(luò)的做法。眾包利用眾多志愿員工的創(chuàng)意和能力——這些志愿員工具備完成任務(wù)的技能,愿意利用業(yè)余時(shí)間工作,滿足于對(duì)其服務(wù)收取小額報(bào)酬,或者暫時(shí)并無報(bào)酬,僅僅滿足于未來獲得更多報(bào)酬的前景。
然而,從一開始,“顛簸的街道”的產(chǎn)品設(shè)計(jì)就是有偏的(bias),因?yàn)槭褂眠@款A(yù)pp的對(duì)象,“不經(jīng)意間”要滿足3個(gè)條件:(1)年齡結(jié)構(gòu)趨近年輕,因?yàn)橹欣夏耆藧弁嬷悄苁謾C(jī)的相對(duì)較少;(2)使用App的人,還得有一部車。雖然有輛車在美國(guó)不算事,但畢竟不是每個(gè)人都有;(3)有錢,還得有閑。前面兩個(gè)條件這還不夠,使用者還得有“閑心”, 想著開車時(shí)打開“顛簸的街道”這個(gè)App。想象一下,很多年輕人的智能手機(jī)安裝的應(yīng)用程序數(shù)量可能兩位數(shù)以上,除了較為常用的社交軟件如Facebook或Twitter(中國(guó)用戶用得較多的是微博、微信等)記得開機(jī)運(yùn)行外,還有什么公益軟件“重要地”一開車就記得打開?
“顛簸的街道”的理念在于,它可以提供 “n=All(所有)”個(gè)坑洼地點(diǎn)信息, 但這里的“n=All(所有)”也僅僅是滿足上述3個(gè)條件的用戶記錄數(shù)據(jù),而非“所有坑洼點(diǎn)”的數(shù)據(jù),上述3個(gè)條件,每個(gè)條件其實(shí)都過濾了一批樣本,“n=All”注定是不成立的。在一些貧民窟,可能因?yàn)槭褂檬謾C(jī)的、開車的、有閑心的App用戶偏少,即使有些路面有較多坑洼點(diǎn),也未必能檢測(cè)出來。
《大數(shù)據(jù)時(shí)代》的作者 舍恩伯格 教授常用“n=All”,來定義大數(shù)據(jù)集合。如果真能這樣,那么就無需采樣了,也不再有采樣偏差的問題,因?yàn)椴蓸右呀?jīng)包含了所有數(shù)據(jù)。
暢銷書《你的數(shù)字感:走出大數(shù)據(jù)分析與解讀的誤區(qū)》(Numbersense: How to Use Big Data to Your Advantage)的作者、美國(guó)紐約大學(xué)統(tǒng)計(jì)學(xué)教授 Kaiser Fung,就毫不客氣地提醒人們,不要簡(jiǎn)單地假定自己掌握了所有有關(guān)的數(shù)據(jù): “N=All(所有)”常常僅僅是對(duì)數(shù)據(jù)的一種假設(shè),而不是現(xiàn)實(shí)。
微軟-紐約首席研究員 Kate Crawford 也指出,現(xiàn)實(shí)數(shù)據(jù)是含有系統(tǒng)偏差的,通常需要人們仔細(xì)考量,才有可能找到并糾正這些系統(tǒng)偏差。大數(shù)據(jù),看起來包羅萬象,但“n=All”往往不過是一個(gè)頗有誘惑力的假象而已。
“n=All”,夢(mèng)想很豐滿,但現(xiàn)實(shí)很骨感!
但即使具備全數(shù)據(jù),就能輕易找到隱藏于數(shù)據(jù)背后的有價(jià)值信息嗎?請(qǐng)接著看下面的故事。
故事03:園中有金不在金——大數(shù)據(jù)的價(jià)值
人們?cè)诿枋龃髷?shù)據(jù)時(shí),通常表明其具備4個(gè)V特征,即4個(gè)以V為首字母的英文描述:Volume(體量大)、Variety(模態(tài)多)、Velocity(速度快)及Value(價(jià)值大)。前三個(gè)V,本質(zhì)上,是為第四個(gè)V服務(wù)的。試想一下,如果大數(shù)據(jù)里沒有我們希望得到的價(jià)值,我們?yōu)楹芜€辛辛苦苦這么折騰前3個(gè)V?
英特爾中國(guó)研究院院長(zhǎng) 吳甘沙先生說,“鑒于大數(shù)據(jù)信息密度低,大數(shù)據(jù)是貧礦,投入產(chǎn)出比不見得好?!薄都~約時(shí)報(bào)》著名科技記者Steve Lohr,在其采訪報(bào)道“大數(shù)據(jù)時(shí)代(The Age of Big Data)”中表明,大數(shù)據(jù)價(jià)值挖掘的風(fēng)險(xiǎn)還在于,會(huì)有很多的“誤報(bào)”發(fā)現(xiàn),用斯坦福大學(xué)統(tǒng)計(jì)學(xué)教授 Trevor Hastie 的話來說,就是“在數(shù)據(jù)的大干草垛中,發(fā)現(xiàn)有意義的“針”,其困難在于“很多干草看起來也像針(The trouble with seeking a meaningful needle in massive haystacks of data is that “many bits of straw look like needles)”
針對(duì)大數(shù)據(jù)的價(jià)值,李國(guó)杰院士借助中國(guó)傳統(tǒng)的寓言故事《園中有金》,從另外一個(gè)角度,說明大數(shù)據(jù)的價(jià)值,寓言故事是這樣的:
有父子二人,居山村,營(yíng)果園。父病后,子不勤耕作,園漸荒蕪。一日,父病危,謂子曰:園中有金。子翻地尋金,無所得,甚悵然。是年秋,園中葡萄、蘋果之屬皆大豐收。子始悟父言之理。
人們總是期望,能從大數(shù)據(jù)中挖掘出意想不到的“大價(jià)值”??衫顕?guó)杰院士認(rèn)為,實(shí)際上,大數(shù)據(jù)的價(jià)值,主要體現(xiàn)在它的驅(qū)動(dòng)效應(yīng)上,大數(shù)據(jù)對(duì)經(jīng)濟(jì)的貢獻(xiàn),并不完全反映在大數(shù)據(jù)公司的直接收入上,應(yīng)考慮對(duì)其他行業(yè)效率和質(zhì)量提高的貢獻(xiàn)。
大數(shù)據(jù)是典型的通用技術(shù),理解通用技術(shù)的價(jià)值,要懂得采用“蜜蜂模型”:蜜蜂的最大效益,并非是自己釀造的蜂蜜,而是蜜蜂傳粉對(duì)農(nóng)林業(yè)的貢獻(xiàn)——你能說秋天的累累碩果,沒有蜜蜂的一份功勞?
回到前文的小故事,兒子翻地的價(jià)值,不僅在于翻到園中的金子,更是在于翻地之后,促進(jìn)了秋天果園的豐收。在第03個(gè)小故事中,醉漢黑暗中尋找的鑰匙,亦非最終的價(jià)值,通過鑰匙打開的門才是。
對(duì)于大數(shù)據(jù)研究而言,一旦數(shù)據(jù)收集、存儲(chǔ)、分析、傳輸?shù)饶芰μ岣吡?,即使沒有發(fā)現(xiàn)什么普適的規(guī)律或令人完全想不到的新知識(shí),也極大地推動(dòng)了諸如計(jì)算機(jī)軟硬件、數(shù)據(jù)分析等行業(yè)的發(fā)展,大數(shù)據(jù)的價(jià)值也已逐步體現(xiàn)。
李國(guó)杰院士認(rèn)為,我們不必天天期盼奇跡出現(xiàn),多做一些“樸實(shí)無華”的事,實(shí)際的進(jìn)步就會(huì)體現(xiàn)在扎扎實(shí)實(shí)的努力之中。一些媒體總喜歡宣傳一些抓人眼球的大數(shù)據(jù)成功案例。但從事大數(shù)據(jù)行業(yè)的人士,應(yīng)保持清醒的頭腦:無華是常態(tài),精彩是無華的質(zhì)變。
如果把“大數(shù)據(jù)”比作農(nóng)夫父子院后的那片土地,那么土地的面積越大,會(huì)不會(huì)能挖掘出的“金子”就越多呢?答案還真不是,下面的故事我們說說大數(shù)據(jù)的大小之爭(zhēng)。
故事04:蓋洛普抽樣的成功——大小之爭(zhēng),“大”數(shù)據(jù)一定勝過小抽樣嗎?
1936年,民主黨人 艾爾弗雷德·蘭登(Alfred Landon)與時(shí)任總統(tǒng) 富蘭克林·羅斯福(Franklin Roosevelt)競(jìng)選下屆總統(tǒng)?!段膶W(xué)文摘》(The Literary Digest)這家頗有聲望的雜志承擔(dān)了選情預(yù)測(cè)的任務(wù)。之所以說它“頗有聲望”,是因?yàn)椤段膶W(xué)文摘》曾在1920年、1924年、1928年、1932年連續(xù)4屆美國(guó)總統(tǒng)大選中,成功地預(yù)測(cè)總統(tǒng)寶座的歸屬。
1936年,《文學(xué)文摘》再次雄赳赳、氣昂昂地照辦老辦法——民意調(diào)查,不同于前幾次的調(diào)查,這次調(diào)查把范圍拓展得更廣。當(dāng)時(shí)大家都相信,數(shù)據(jù)集合越大,預(yù)測(cè)結(jié)果越準(zhǔn)確?!段膶W(xué)文摘》計(jì)劃寄出1000萬份調(diào)查問卷,覆蓋當(dāng)時(shí)四分之一的選民。最終該雜志在兩個(gè)多月內(nèi)收到了驚人的240萬份回執(zhí),在統(tǒng)計(jì)完成以后,《文學(xué)文摘》宣布,艾爾弗雷德?蘭登將會(huì)以55比41的優(yōu)勢(shì),擊敗富蘭克林·羅斯福贏得大選,另外4%的選民則會(huì)零散地投給第三候選人。
然而,真實(shí)的選舉結(jié)果與《文學(xué)文摘》的預(yù)測(cè)大相徑庭:羅斯福以61比37的壓倒性優(yōu)勢(shì)獲勝。讓《文學(xué)文摘》臉上掛不住的是,新民意調(diào)查的開創(chuàng)者 喬治·蓋洛普(George Gallup),僅僅通過一場(chǎng)規(guī)模小得多的問卷——一個(gè)3000人的問卷調(diào)查,得出了準(zhǔn)確得多的預(yù)測(cè)結(jié)果:羅斯福將穩(wěn)操勝券。蓋洛普的3000人“小”抽樣,居然挑翻了《文學(xué)文摘》240萬的“大”調(diào)查,實(shí)在讓專家學(xué)者和社會(huì)大眾跌破眼鏡。
顯然,蓋洛普有他獨(dú)到的辦法,而從數(shù)據(jù)體積大小的角度來看,“大”并不能決定一切。民意調(diào)查是基于對(duì)投票人的大范圍采樣。這意味著調(diào)查者需要處理兩個(gè)難題:樣本誤差和樣本偏差。
在過去的200多年里,統(tǒng)計(jì)學(xué)家們總結(jié)出了在認(rèn)知數(shù)據(jù)的過程中存在的種種陷阱(如樣本偏差和樣本誤差)。如今數(shù)據(jù)的規(guī)模更大了,采集的成本也更低了,“大數(shù)據(jù)”中依然存在大量的“小數(shù)據(jù)”問題,大數(shù)據(jù)采集同樣會(huì)犯小數(shù)據(jù)采集一樣的統(tǒng)計(jì)偏差。我們不能掩耳盜鈴,假裝這些陷阱都已經(jīng)被填平了,事實(shí)上,它們還都在,甚至問題更加突出。
蓋洛普成功的法寶在于,科學(xué)地抽樣,保證抽樣的隨機(jī)性,他沒有盲目的擴(kuò)大調(diào)查面積,而是根據(jù)選民的分別特征,根據(jù)職業(yè)、年齡、膚色等在3000人的比重,再確定電話訪問、郵件訪問和街頭調(diào)查等各種方式所在比例。由于樣本抽樣得當(dāng),就可以做到“以小見大”、“一葉知秋”。
《文學(xué)文摘》的失敗在于,取樣存在嚴(yán)重偏差,它的調(diào)查對(duì)象主要鎖定為它自己的訂戶。雖然《文學(xué)文摘》的問卷調(diào)查數(shù)量不少,但它的訂戶多集中在中上階層,樣本從一開始就是有偏差的(sample bias),因此,推斷的結(jié)果不準(zhǔn),就不足為奇了。而且民主黨人艾爾弗雷德?蘭登的支持者,似乎更樂于寄回問卷結(jié)果,這使得調(diào)查的錯(cuò)誤更進(jìn)了一步。這兩種偏差的結(jié)合,注定了《讀者文摘》調(diào)查的失敗。
我們可以類比一下《文學(xué)文摘》的調(diào)查模式,試想一樣,如果在中國(guó)春運(yùn)來臨時(shí),在火車上調(diào)查,問乘客是不是買到票了,即使你調(diào)查1000萬人,這可是大數(shù)據(jù)啊,結(jié)論毫無意外地是都買到了,但這個(gè)結(jié)果無論如何都是不科學(xué)的,因?yàn)闃颖镜倪x取是有偏的。
當(dāng)然,采樣也是有缺點(diǎn)的,如果采樣沒有滿足隨機(jī)性,即使百分之幾的偏差,就可能丟失“黑天鵝事件”的信號(hào),因此在全數(shù)據(jù)集存在的前提下,全數(shù)據(jù)當(dāng)然是首選(但從第02故事中,我們可以看到,全數(shù)據(jù)通常是無法得到的)。對(duì)針對(duì)數(shù)據(jù)分析的價(jià)值,英特爾中國(guó)研究院院長(zhǎng)吳甘沙先生給出了一個(gè)排序:全數(shù)據(jù)>好采樣數(shù)據(jù)>不均勻的大量數(shù)據(jù)。
大數(shù)據(jù)分析技術(shù)運(yùn)用得當(dāng),能極大地提升人們對(duì)事物的洞察力(insight),但技術(shù)和人誰在決策(decision-making)中起更大作用?在下面的“點(diǎn)球成金”小故事,我們聊聊這個(gè)話題。
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
AI 浪潮下的生存與進(jìn)階: CDA數(shù)據(jù)分析師—開啟新時(shí)代職業(yè)生涯的鑰匙(深度研究報(bào)告、發(fā)展指導(dǎo)白皮書) 發(fā)布機(jī)構(gòu):CDA數(shù)據(jù)科 ...
2025-07-13LSTM 模型輸入長(zhǎng)度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長(zhǎng)序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報(bào)考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代浪潮下,CDA 數(shù)據(jù)分析師認(rèn)證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計(jì)的實(shí)用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強(qiáng)大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠(chéng)摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實(shí)施重大更新。 此次更新旨在確保認(rèn) ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價(jià)值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡(jiǎn)稱 BI)深度融合的時(shí)代,BI ...
2025-07-10SQL 在預(yù)測(cè)分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢(shì)預(yù)判? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代,預(yù)測(cè)分析作為挖掘數(shù)據(jù)潛在價(jià)值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價(jià)值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點(diǎn),而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報(bào)考到取證的全攻略? 在數(shù)字經(jīng)濟(jì)蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭(zhēng)搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢(shì)性檢驗(yàn):捕捉數(shù)據(jù)背后的時(shí)間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢(shì)性檢驗(yàn)如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時(shí)間維度的精準(zhǔn)切片? ? 在數(shù)據(jù)的世界里,時(shí)間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準(zhǔn) ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實(shí)戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認(rèn)證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗(yàn):數(shù)據(jù)趨勢(shì)與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準(zhǔn)確捕捉數(shù)據(jù)的趨勢(shì)變化以及識(shí)別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認(rèn)證作為國(guó)內(nèi)權(quán)威的數(shù)據(jù)分析能力認(rèn)證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對(duì)策略? 長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨(dú)特的門控機(jī)制,在 ...
2025-07-07統(tǒng)計(jì)學(xué)方法在市場(chǎng)調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場(chǎng)調(diào)研是企業(yè)洞察市場(chǎng)動(dòng)態(tài)、了解消費(fèi)者需求的重要途徑,而統(tǒng)計(jì)學(xué)方法則是市場(chǎng)調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當(dāng)下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動(dòng)力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準(zhǔn)確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動(dòng)力,CDA(Certifie ...
2025-07-04