
人類“退化”時(shí)代,大數(shù)據(jù)分析基礎(chǔ)能力你真的有嗎?
大數(shù)據(jù)分析是現(xiàn)在極為吃香的技術(shù),隨著大數(shù)據(jù)分析工具的發(fā)展,產(chǎn)品革新可以幫助人們做更多的事,這也讓人越來越懶惰,疲于學(xué)習(xí)。大數(shù)據(jù)魔鏡可以自動(dòng)建模,自動(dòng)實(shí)現(xiàn)數(shù)據(jù)路徑規(guī)劃等。這些功能將給IT人員省下很大力氣。然而機(jī)器越進(jìn)步,人類可能越“退化”。準(zhǔn)備從事大數(shù)據(jù)分析相關(guān)行業(yè)的人,你們準(zhǔn)備好了嗎?大數(shù)據(jù)分析的基礎(chǔ)能力,你真的有嗎?這些基礎(chǔ)能力,是你進(jìn)行深度大數(shù)據(jù)分析必不可少的。
掌握基礎(chǔ)、更新知識(shí)。
基本技術(shù)怎么強(qiáng)調(diào)都不過分。這里的術(shù)更多是計(jì)算機(jī)、統(tǒng)計(jì)知識(shí),這一點(diǎn)必須謹(jǐn)記。
數(shù)據(jù)庫查詢—SQL
數(shù)據(jù)分析師在計(jì)算機(jī)的層面的技能要求較低,主要是會(huì)SQL,因?yàn)檫@里解決一個(gè)數(shù)據(jù)提取的問題。有機(jī)會(huì)可以去逛逛一些專業(yè)的數(shù)據(jù)論壇,學(xué)習(xí)一些SQL技巧、新的函數(shù),對(duì)你工作效率的提高是很有幫助的。
統(tǒng)計(jì)知識(shí)與數(shù)據(jù)挖掘
你要掌握基礎(chǔ)的、成熟的數(shù)據(jù)建模方法、數(shù)據(jù)挖掘方法。例如:多元統(tǒng)計(jì):回歸分析、因子分析、離散等,數(shù)據(jù)挖掘中的:決策樹、聚類、關(guān)聯(lián)規(guī)則、神經(jīng)網(wǎng)絡(luò)等。但是還是應(yīng)該關(guān)注一些博客、論壇中大家對(duì)于最新方法的介紹,或者是對(duì)老方法的新運(yùn)用,不斷更新自己知識(shí),才能跟上時(shí)代,也許你工作中根本不會(huì)用到,但是未來呢?
行業(yè)知識(shí)
如果數(shù)據(jù)不結(jié)合具體的行業(yè)、業(yè)務(wù)知識(shí),數(shù)據(jù)就是一堆數(shù)字,不代表任何東西。是冷冰冰,是不會(huì)產(chǎn)生任何價(jià)值的,數(shù)據(jù)驅(qū)動(dòng)營銷、提高科學(xué)決策一切都是空的。
一名數(shù)據(jù)分析師,一定要對(duì)所在行業(yè)知識(shí)、業(yè)務(wù)知識(shí)有深入的了解。例如:看到某個(gè)數(shù)據(jù),你首先必須要知道,這個(gè)數(shù)據(jù)的統(tǒng)計(jì)口徑是什么?是如何取出來的?這個(gè)數(shù)據(jù)在這個(gè)行業(yè), 在相應(yīng)的業(yè)務(wù)是在哪個(gè)環(huán)節(jié)是產(chǎn)生的?數(shù)值的代表業(yè)務(wù)發(fā)生了什么(背景是什么)?對(duì)于A部門來說,本月新會(huì)員有10萬,10萬好還是不好呢?先問問上面的這個(gè)問題:
對(duì)于A部門,
1、新會(huì)員的統(tǒng)計(jì)口徑是什么。第一次在使用A部門的產(chǎn)品的會(huì)員?還是在站在公司角度上說,第一次在公司發(fā)展業(yè)務(wù)接觸的會(huì)員?
2、是如何統(tǒng)計(jì)出來的。A:時(shí)間;是通過創(chuàng)建時(shí)間,還是業(yè)務(wù)完成時(shí)間。B:業(yè)務(wù)場景。是只要與業(yè)務(wù)發(fā)接觸,例如下了單,還是要業(yè)務(wù)完成后,到成功支付。
3、這個(gè)數(shù)據(jù)是在哪個(gè)環(huán)節(jié)統(tǒng)計(jì)出來。在注冊環(huán)節(jié),在下單環(huán)節(jié),在成功支付環(huán)節(jié)。
4、這個(gè)數(shù)據(jù)代表著什么。10萬高嗎?與歷史相同比較?是否做了營銷活動(dòng)?這個(gè)行業(yè)處理行業(yè)生命同期哪個(gè)階段?
在前面二點(diǎn),更多要求你能按業(yè)務(wù)邏輯,來進(jìn)行數(shù)據(jù)的提?。ǜ嗍菍?/span>SQL代碼從數(shù)據(jù)庫取出數(shù)據(jù))。后面二點(diǎn),更重要是對(duì)業(yè)務(wù)了解,更行業(yè)知識(shí)了解,你才能進(jìn)行相應(yīng)的數(shù)據(jù)解讀,才能讓數(shù)據(jù)產(chǎn)生真正的價(jià)值,不是嗎?
對(duì)于新進(jìn)入數(shù)據(jù)行業(yè)或者剛進(jìn)入數(shù)據(jù)行業(yè)的朋友來說:
行業(yè)知識(shí)都重要,也許你看到很多的數(shù)據(jù)行業(yè)的同仁,在微博或者寫文章說,數(shù)據(jù)分析思想、行業(yè)知識(shí)、業(yè)務(wù)知識(shí)很重要。我非常同意。因?yàn)樽鳛閿?shù)據(jù)分析師,在發(fā)表任何觀點(diǎn)的時(shí)候,都不要忘記你居于的背景是什么?
但大家一定不要忘記了一些基本的技術(shù),不要把基礎(chǔ)去忘記了,如果一名數(shù)據(jù)分析師不會(huì)寫SQL,那麻煩就大了。你只有把數(shù)據(jù)先取對(duì)了,才能正確的分析,否則一切都是錯(cuò)誤了,甚至?xí)?dǎo)致致命的結(jié)論。新同學(xué),還是好好花時(shí)間把基礎(chǔ)技能學(xué)好。因?yàn)榛A(chǔ)技能你可以在短期內(nèi)快速提高,但是在行業(yè)、業(yè)務(wù)知識(shí)的是一點(diǎn)一滴的積累起來的,有時(shí)候是急不來的,這更需要花時(shí)間慢慢去沉淀下來。
不要過于追求很高級(jí)、高深的統(tǒng)計(jì)方法。還是要多去學(xué)習(xí)基本的統(tǒng)計(jì)學(xué)知識(shí),從而提高工作效率,達(dá)到事半功倍。
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對(duì)象的 text 與 content:區(qū)別、場景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請(qǐng)求開發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請(qǐng)求工具對(duì)比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請(qǐng)求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營問題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價(jià)值 在數(shù)據(jù)驅(qū)動(dòng)決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實(shí)踐到業(yè)務(wù)價(jià)值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價(jià)值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10