
八大趨勢將主導(dǎo)大數(shù)據(jù)未來的發(fā)展
隨著數(shù)據(jù)量爆炸性地增長,大數(shù)據(jù)技術(shù)的發(fā)展也達到了前所未有的新高度。2015年大數(shù)據(jù)仍將保持這一快速增長勢頭。預(yù)計在新的一年以及更遠的將來,將有八大主要趨勢主導(dǎo)大數(shù)據(jù)技術(shù)發(fā)展領(lǐng)域。
趨勢一:數(shù)據(jù)的資源化
何為資源化,是指大數(shù)據(jù)成為企業(yè)和社會關(guān)注的重要戰(zhàn)略資源,并已成為大家爭相搶奪的新焦點。因而,企業(yè)必須要提前制定大數(shù)據(jù)營銷戰(zhàn)略計劃,搶占市場先機。
趨勢二:與云計算的深度結(jié)合
大數(shù)據(jù)離不開云處理,云處理為大數(shù)據(jù)提供了彈性可拓展的基礎(chǔ)設(shè)備,是產(chǎn)生大數(shù)據(jù)的平臺之一。自2013年開始,大數(shù)據(jù)技術(shù)已開始和云計算技術(shù)緊密結(jié)合,預(yù)計未來兩者關(guān)系將更為密切。除此之外,物聯(lián)網(wǎng)、移動互聯(lián)網(wǎng)等新興計算形態(tài),也將一齊助力大數(shù)據(jù)革命,讓大數(shù)據(jù)營銷發(fā)揮出更大的影響力。
趨勢三:科學(xué)理論的突破
隨著大數(shù)據(jù)的快速發(fā)展,就像計算機和互聯(lián)網(wǎng)一樣,大數(shù)據(jù)很有可能是新一輪的技術(shù)革命。隨之興起的數(shù)據(jù)挖掘、機器學(xué)習(xí)和人工智能等相關(guān)技術(shù),可能會改變數(shù)據(jù)世界里的很多算法和基礎(chǔ)理論,實現(xiàn)科學(xué)技術(shù)上的突破。
趨勢四:數(shù)據(jù)科學(xué)和數(shù)據(jù)聯(lián)盟的成立
未來,數(shù)據(jù)科學(xué)將成為一門專門的學(xué)科,被越來越多的人所認知。各大高校將設(shè)立專門的數(shù)據(jù)科學(xué)類專業(yè),也會催生一批與之相關(guān)的新的就業(yè)崗位。與此同時,基于數(shù)據(jù)這個基礎(chǔ)平臺,也將建立起跨領(lǐng)域的數(shù)據(jù)共享平臺,之后,數(shù)據(jù)共享將擴展到企業(yè)層面,并且成為未來產(chǎn)業(yè)的核心一環(huán)。
趨勢五:數(shù)據(jù)泄露泛濫
未來幾年數(shù)據(jù)泄露事件的增長率也許會達到100%,除非數(shù)據(jù)在其源頭就能夠得到安全保障??梢哉f,在未來,每個財富500強企業(yè)都會面臨數(shù)據(jù)攻擊,無論他們是否已經(jīng)做好安全防范。而所有企業(yè),無論規(guī)模大小,都需要重新審視今天的安全定義。
在財富500強企業(yè)中,超過50%將會設(shè)置首席信息安全官這一職位。企業(yè)需要從新的角度來確保自身以及客戶數(shù)據(jù),所有數(shù)據(jù)在創(chuàng)建之初便需要獲得安全保障,而并非在數(shù)據(jù)保存的最后一個環(huán)節(jié),僅僅加強后者的安全措施已被證明于事無補。
趨勢六:數(shù)據(jù)管理成為核心競爭力
數(shù)據(jù)管理成為核心競爭力,直接影響財務(wù)表現(xiàn)。當(dāng)“數(shù)據(jù)資產(chǎn)是企業(yè)核心資產(chǎn)”的概念深入人心之后,企業(yè)對于數(shù)據(jù)管理便有了更清晰的界定,將數(shù)據(jù)管理作為企業(yè)核心競爭力,持續(xù)發(fā)展,戰(zhàn)略性規(guī)劃與運用數(shù)據(jù)資產(chǎn),成為企業(yè)數(shù)據(jù)管理的核心。數(shù)據(jù)資產(chǎn)管理效率與主營業(yè)務(wù)收入增長率、銷售收入增長率顯著正相關(guān);此外,對于具有互聯(lián)網(wǎng)思維的企業(yè)而言,數(shù)據(jù)資產(chǎn)競爭力所占比重為36.8%,數(shù)據(jù)資產(chǎn)的管理效果將直接影響企業(yè)的財務(wù)表現(xiàn)。
趨勢七:數(shù)據(jù)質(zhì)量是BI(商業(yè)智能)成功的關(guān)鍵
采用自助式商業(yè)智能工具進行大數(shù)據(jù)處理的企業(yè)將會脫穎而出。其中要面臨的一個挑戰(zhàn)是,很多數(shù)據(jù)源會帶來大量低質(zhì)量數(shù)據(jù)。想要成功,企業(yè)需要理解原始數(shù)據(jù)與數(shù)據(jù)分析之間的差距,從而消除低質(zhì)量數(shù)據(jù)并通過BI獲得更佳決策。
趨勢八:數(shù)據(jù)生態(tài)系統(tǒng)復(fù)合化程度加強
大數(shù)據(jù)的世界不只是一個單一的、巨大的計算機網(wǎng)絡(luò),而是一個由大量活動構(gòu)件與多元參與者元素所構(gòu)成的生態(tài)系統(tǒng),終端設(shè)備提供商、基礎(chǔ)設(shè)施提供商、網(wǎng)絡(luò)服務(wù)提供商、網(wǎng)絡(luò)接入服務(wù)提供商、數(shù)據(jù)服務(wù)使能者、數(shù)據(jù)服務(wù)提供商、觸點服務(wù)、數(shù)據(jù)服務(wù)零售商等等一系列的參與者共同構(gòu)建的生態(tài)系統(tǒng)。
而今,這樣一套數(shù)據(jù)生態(tài)系統(tǒng)的基本雛形已然形成,接下來的發(fā)展將趨向于系統(tǒng)內(nèi)部角色的細分,也就是市場的細分;系統(tǒng)機制的調(diào)整,也就是商業(yè)模式的創(chuàng)新;系統(tǒng)結(jié)構(gòu)的調(diào)整,也就是競爭環(huán)境的調(diào)整等等,從而使得數(shù)據(jù)生態(tài)系統(tǒng)復(fù)合化程度逐漸增強。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
訓(xùn)練與驗證損失驟升:機器學(xué)習(xí)訓(xùn)練中的異常診斷與解決方案 在機器學(xué)習(xí)模型訓(xùn)練過程中,“損失曲線” 是反映模型學(xué)習(xí)狀態(tài)的核心指 ...
2025-09-19解析 DataHub 與 Kafka:數(shù)據(jù)生態(tài)中兩類核心工具的差異與協(xié)同 在數(shù)字化轉(zhuǎn)型加速的今天,企業(yè)對數(shù)據(jù)的需求已從 “存儲” 轉(zhuǎn)向 “ ...
2025-09-19CDA 數(shù)據(jù)分析師:讓統(tǒng)計基本概念成為業(yè)務(wù)決策的底層邏輯 統(tǒng)計基本概念是商業(yè)數(shù)據(jù)分析的 “基礎(chǔ)語言”—— 從描述數(shù)據(jù)分布的 “均 ...
2025-09-19CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-19SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學(xué)領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學(xué)計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學(xué)計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11