
這七種數(shù)據(jù)分析領(lǐng)域中最為人稱道的降維方法
近來由于數(shù)據(jù)記錄和屬性規(guī)模的急劇增長,大數(shù)據(jù)處理平臺和并行數(shù)據(jù)分析算法也隨之出現(xiàn)。于此同時(shí),這也推動了數(shù)據(jù)降維處理的應(yīng)用。實(shí)際上,數(shù)據(jù)量有時(shí)過猶不及。有時(shí)在數(shù)據(jù)分析應(yīng)用中大量的數(shù)據(jù)反而會產(chǎn)生更壞的性能。
最新的一個例子是采用 2009 KDD Challenge 大數(shù)據(jù)集來預(yù)測客戶流失量。 該數(shù)據(jù)集維度達(dá)到 15000 維。 大多數(shù)數(shù)據(jù)挖掘算法都直接對數(shù)據(jù)逐列處理,在數(shù)據(jù)數(shù)目一大時(shí),導(dǎo)致算法越來越慢。該項(xiàng)目的最重要的就是在減少數(shù)據(jù)列數(shù)的同時(shí)保證丟失的數(shù)據(jù)信息盡可能少。
以該項(xiàng)目為例,我們開始來探討在當(dāng)前數(shù)據(jù)分析領(lǐng)域中最為數(shù)據(jù)分析人員稱道和接受的數(shù)據(jù)降維方法。
該方法的是基于包含太多缺失值的數(shù)據(jù)列包含有用信息的可能性較少。因此,可以將數(shù)據(jù)列缺失值大于某個閾值的列去掉。閾值越高,降維方法更為積極,即降維越少。該方法示意圖如下:
與上個方法相似,該方法假設(shè)數(shù)據(jù)列變化非常小的列包含的信息量少。因此,所有的數(shù)據(jù)列方差小的列被移除。需要注意的一點(diǎn)是:方差與數(shù)據(jù)范圍相關(guān)的,因此在采用該方法前需要對數(shù)據(jù)做歸一化處理。算法示意圖如下:
高相關(guān)濾波認(rèn)為當(dāng)兩列數(shù)據(jù)變化趨勢相似時(shí),它們包含的信息也顯示。這樣,使用相似列中的一列就可以滿足機(jī)器學(xué)習(xí)模型。對于數(shù)值列之間的相似性通過計(jì)算相關(guān)系數(shù)來表示,對于名詞類列的相關(guān)系數(shù)可以通過計(jì)算皮爾遜卡方值來表示。相關(guān)系數(shù)大于某個閾值的兩列只保留一列。同樣要注意的是:相關(guān)系數(shù)對范圍敏感,所以在計(jì)算之前也需要對數(shù)據(jù)進(jìn)行歸一化處理。算法示意圖如下:
組合決策樹通常又被成為隨機(jī)森林,它在進(jìn)行特征選擇與構(gòu)建有效的分類器時(shí)非常有用。一種常用的降維方法是對目標(biāo)屬性產(chǎn)生許多巨大的樹,然后根據(jù)對每個屬性的統(tǒng)計(jì)結(jié)果找到信息量最大的特征子集。例如,我們能夠?qū)σ粋€非常巨大的數(shù)據(jù)集生成非常層次非常淺的樹,每顆樹只訓(xùn)練一小部分屬性。如果一個屬性經(jīng)常成為最佳分裂屬性,那么它很有可能是需要保留的信息特征。對隨機(jī)森林數(shù)據(jù)屬性的統(tǒng)計(jì)評分會向我們揭示與其它屬性相比,哪個屬性才是預(yù)測能力最好的屬性。算法示意圖如下:
主成分分析是一個統(tǒng)計(jì)過程,該過程通過正交變換將原始的 n 維數(shù)據(jù)集變換到一個新的被稱做主成分的數(shù)據(jù)集中。變換后的結(jié)果中,第一個主成分具有最大的方差值,每個后續(xù)的成分在與前述主成分正交條件限制下與具有最大方差。降維時(shí)僅保存前 m(m < n) 個主成分即可保持最大的數(shù)據(jù)信息量。需要注意的是主成分變換對正交向量的尺度敏感。數(shù)據(jù)在變換前需要進(jìn)行歸一化處理。同樣也需要注意的是,新的主成分并不是由實(shí)際系統(tǒng)產(chǎn)生的,因此在進(jìn)行 PCA 變換后會喪失數(shù)據(jù)的解釋性。如果說,數(shù)據(jù)的解釋能力對你的分析來說很重要,那么 PCA 對你來說可能就不適用了。算法示意圖如下:
在該方法中,所有分類算法先用 n 個特征進(jìn)行訓(xùn)練。每次降維操作,采用 n-1 個特征對分類器訓(xùn)練 n 次,得到新的 n 個分類器。將新分類器中錯分率變化最小的分類器所用的 n-1 維特征作為降維后的特征集。不斷的對該過程進(jìn)行迭代,即可得到降維后的結(jié)果。第k 次迭代過程中得到的是 n-k 維特征分類器。通過選擇最大的錯誤容忍率,我們可以得到在選擇分類器上達(dá)到指定分類性能最小需要多少個特征。算法示意圖如下:
前向特征構(gòu)建是反向特征消除的反過程。在前向特征過程中,我們從 1 個特征開始,每次訓(xùn)練添加一個讓分類器性能提升最大的特征。前向特征構(gòu)造和反向特征消除都十分耗時(shí)。它們通常用于輸入維數(shù)已經(jīng)相對較低的數(shù)據(jù)集。算法示意圖如下:
我們選擇 2009 KDD chanllenge 的削數(shù)據(jù)集來對這些降維技術(shù)在降維率、準(zhǔn)確度損失率以及計(jì)算速度方面進(jìn)行比較。當(dāng)然,最后的準(zhǔn)確度與損失率也與選擇的數(shù)據(jù)分析模型有關(guān)。因此,最后的降維率與準(zhǔn)確度的比較是在三種模型中進(jìn)行,這三種模型分別是:決策樹,神經(jīng)網(wǎng)絡(luò)與樸素貝葉斯。
通過運(yùn)行優(yōu)化循環(huán),最佳循環(huán)終止意味著低緯度與高準(zhǔn)確率取決于七大降維方法與最佳分類模型。最后的最佳模型的性能通過采用所有特征進(jìn)行訓(xùn)練模型的基準(zhǔn)準(zhǔn)確度與 ROC 曲線下的面積來進(jìn)行比較。下面是對所有比較結(jié)果的對比。
從上表中的對比可知,數(shù)據(jù)降維算法不僅僅是能夠提高算法執(zhí)行的速度,同時(shí)也能過提高分析模型的性能。 在對數(shù)據(jù)集采用:缺失值降維、低方差濾波,高相關(guān)濾波或者隨機(jī)森林降維時(shí),表中的 AoC 在測試數(shù)據(jù)集上有小幅度的增長。
確實(shí)在大數(shù)據(jù)時(shí)代,數(shù)據(jù)越多越好似乎已經(jīng)成為公理。我們再次解釋了當(dāng)數(shù)據(jù)數(shù)據(jù)集寶航過多的數(shù)據(jù)噪聲時(shí),算法的性能會導(dǎo)致算法的性能達(dá)不到預(yù)期。移除信息量較少甚至無效信息唯獨(dú)可能會幫助我們構(gòu)建更具擴(kuò)展性、通用性的數(shù)據(jù)模型。該數(shù)據(jù)模型在新數(shù)據(jù)集上的表現(xiàn)可能會更好。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營問題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價(jià)值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實(shí)踐到業(yè)務(wù)價(jià)值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價(jià)值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10CDA 數(shù)據(jù)分析師:商業(yè)數(shù)據(jù)分析實(shí)踐的落地者與價(jià)值創(chuàng)造者 商業(yè)數(shù)據(jù)分析的價(jià)值,最終要在 “實(shí)踐” 中體現(xiàn) —— 脫離業(yè)務(wù)場景的分 ...
2025-09-10機(jī)器學(xué)習(xí)解決實(shí)際問題的核心關(guān)鍵:從業(yè)務(wù)到落地的全流程解析 在人工智能技術(shù)落地的浪潮中,機(jī)器學(xué)習(xí)作為核心工具,已廣泛應(yīng)用于 ...
2025-09-09SPSS 編碼狀態(tài)區(qū)域中 Unicode 的功能與價(jià)值解析 在 SPSS(Statistical Product and Service Solutions,統(tǒng)計(jì)產(chǎn)品與服務(wù)解決方案 ...
2025-09-09