
如何用Python進行大數(shù)據(jù)挖掘和分析?快速入門路徑圖
大數(shù)據(jù)無處不在。在時下這個年代,不管你喜歡與否,在運營一個成功的商業(yè)的過程中都有可能會遇到它。
什么是 大數(shù)據(jù) ?
大數(shù)據(jù)就像它看起來那樣——有大量的數(shù)據(jù)。單獨而言,你能從單一的數(shù)據(jù)獲取的洞見窮其有限。但是結(jié)合復(fù)雜數(shù)學(xué)模型以及強大計算能力的TB級數(shù)據(jù),卻能創(chuàng)造出人類無法制造的洞見。大數(shù)據(jù)分析提供給商業(yè)的價值是無形的,并且每天都在超越人類的能力。
大數(shù)據(jù)分析的第一步就是要收集數(shù)據(jù)本身,也就是眾所周知的“數(shù)據(jù)挖掘”。大部分的企業(yè)處理著GB級的數(shù)據(jù),這些數(shù)據(jù)有用戶數(shù)據(jù)、產(chǎn)品數(shù)據(jù)和地理位置數(shù)據(jù)。今天,我將會帶著大家一起探索如何用 Python 進行大數(shù)據(jù)挖掘和分析?
為什么選擇Python?
Python最大的優(yōu)點就是簡單易用。這個語言有著直觀的語法并且還是個強大的多用途語言。這一點在大數(shù)據(jù)分析環(huán)境中很重要,并且許多企業(yè)內(nèi)部已經(jīng)在使用Python了,比如Google,YouTube,迪士尼等。還有,Python是開源的,并且有很多用于數(shù)據(jù)科學(xué)的類庫。
現(xiàn)在,如果你真的要用Python進行大數(shù)據(jù)分析的話,毫無疑問你需要了解Python的語法,理解正則表達式,知道什么是元組、字符串、字典、字典推導(dǎo)式、列表和列表推導(dǎo)式——這只是開始。
一般可以按“數(shù)據(jù)獲取-數(shù)據(jù)存儲與提取-數(shù)據(jù)預(yù)處理-數(shù)據(jù)建模與分析-數(shù)據(jù)可視化”這樣的步驟來實施一個數(shù)據(jù)分析項目。按照這個流程,每個部分需要掌握的細分知識點如下:
數(shù)據(jù)獲?。汗_數(shù)據(jù)、Python爬蟲
外部數(shù)據(jù)的獲取方式主要有以下兩種。
第一種是獲取外部的公開數(shù)據(jù)集,一些科研機構(gòu)、企業(yè)、政府會開放一些數(shù)據(jù),你需要到特定的網(wǎng)站去下載這些數(shù)據(jù)。這些數(shù)據(jù)集通常比較完善、質(zhì)量相對較高。
另一種獲取外部數(shù)據(jù)的方式就是爬蟲。
比如你可以通過爬蟲獲取招聘網(wǎng)站某一職位的招聘信息,爬取租房網(wǎng)站上某城市的租房信息,爬取豆瓣評分評分最高的電影列表,獲取知乎點贊排行、網(wǎng)易云音樂評論排行列表?;诨ヂ?lián)網(wǎng)爬取的數(shù)據(jù),你可以對某個行業(yè)、某種人群進行分析。
在爬蟲之前你需要先了解一些 Python 的基礎(chǔ)知識:元素(列表、字典、元組等)、變量、循環(huán)、函數(shù)………
以及,如何用 Python 庫(urllib、BeautifulSoup、requests、scrapy)實現(xiàn)網(wǎng)頁爬蟲。
掌握基礎(chǔ)的爬蟲之后,你還需要一些高級技巧,比如正則表達式、使用cookie信息、模擬用戶登錄、抓包分析、搭建代理池等等,來應(yīng)對不同網(wǎng)站的反爬蟲限制。
數(shù)據(jù)存?。?a href='/map/sql/' style='color:#000;font-size:inherit;'>SQL語言
在應(yīng)對萬以內(nèi)的數(shù)據(jù)的時候,Excel對于一般的分析沒有問題,一旦數(shù)據(jù)量大,就會力不從心,數(shù)據(jù)庫就能夠很好地解決這個問題。而且大多數(shù)的企業(yè),都會以SQL的形式來存儲數(shù)據(jù)。
SQL作為最經(jīng)典的數(shù)據(jù)庫工具,為海量數(shù)據(jù)的存儲與管理提供可能,并且使數(shù)據(jù)的提取的效率大大提升。你需要掌握以下技能:
提取特定情況下的數(shù)據(jù)
數(shù)據(jù)庫的增、刪、查、改
數(shù)據(jù)的分組聚合、如何建立多個表之間的聯(lián)系
數(shù)據(jù)預(yù)處理:Python(pandas)
很多時候我們拿到的數(shù)據(jù)是不干凈的,數(shù)據(jù)的重復(fù)、缺失、異常值等等,這時候就需要進行數(shù)據(jù)的清洗,把這些影響分析的數(shù)據(jù)處理好,才能獲得更加精確地分析結(jié)果。
對于數(shù)據(jù)預(yù)處理,學(xué)會 pandas (Python包)的用法,應(yīng)對一般的數(shù)據(jù)清洗就完全沒問題了。需要掌握的知識點如下:
選擇:數(shù)據(jù)訪問
缺失值處理:對缺失數(shù)據(jù)行進行刪除或填充
異常值處理:清除不必要的空格和極端、異常數(shù)據(jù)
相關(guān)操作:描述性統(tǒng)計、Apply、直方圖等
合并:符合各種邏輯關(guān)系的合并操作
分組:數(shù)據(jù)劃分、分別執(zhí)行函數(shù)、數(shù)據(jù)重組
Reshaping:快速生成數(shù)據(jù)透視表
概率論及統(tǒng)計學(xué)知識
需要掌握的知識點如下:
基本統(tǒng)計量:均值、中位數(shù)、眾數(shù)、百分位數(shù)、極值等
其他描述性統(tǒng)計量:偏度、方差、標(biāo)準(zhǔn)差、顯著性等
其他統(tǒng)計知識:總體和樣本、參數(shù)和統(tǒng)計量、ErrorBar
概率分布與假設(shè)檢驗:各種分布、假設(shè)檢驗流程
有了統(tǒng)計學(xué)的基本知識,你就可以用這些統(tǒng)計量做基本的分析了。你可以使用 Seaborn、matplotlib 等(python包)做一些可視化的分析,通過各種可視化統(tǒng)計圖,并得出具有指導(dǎo)意義的結(jié)果。
Python 數(shù)據(jù)分析
掌握回歸分析的方法,通過線性回歸和邏輯回歸,其實你就可以對大多數(shù)的數(shù)據(jù)進行回歸分析,并得出相對精確地結(jié)論。這部分需要掌握的知識點如下:
基本的聚類算法:k-means……
調(diào)參方法:如何調(diào)節(jié)參數(shù)優(yōu)化模型
Python 數(shù)據(jù)分析包:scipy、numpy、scikit-learn等
在數(shù)據(jù)分析的這個階段,重點了解回歸分析的方法,大多數(shù)的問題可以得以解決,利用描述性的統(tǒng)計分析和回歸分析,你完全可以得到一個不錯的分析結(jié)論。
當(dāng)然,隨著你實踐量的增多,可能會遇到一些復(fù)雜的問題,你就可能需要去了解一些更高級的算法:分類、聚類。
然后你會知道面對不同類型的問題的時候更適合用哪種算法模型,對于模型的優(yōu)化,你需要去了解如何通過特征提取、參數(shù)調(diào)節(jié)來提升預(yù)測的精度。
你可以通過 Python 中的 scikit-learn 庫來實現(xiàn)數(shù)據(jù)分析、數(shù)據(jù)挖掘建模和分析的全過程。
總結(jié)
其實做數(shù)據(jù)挖掘不是夢,5步就能讓你成為一個Python爬蟲高手!
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
LSTM 模型輸入長度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動決策的時代浪潮下,CDA 數(shù)據(jù)分析師認證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計的實用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實施重大更新。 此次更新旨在確保認 ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時代,BI ...
2025-07-10SQL 在預(yù)測分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢預(yù)判? ? 在數(shù)據(jù)驅(qū)動決策的時代,預(yù)測分析作為挖掘數(shù)據(jù)潛在價值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點,而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報考到取證的全攻略? 在數(shù)字經(jīng)濟蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢性檢驗:捕捉數(shù)據(jù)背后的時間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢性檢驗如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時間維度的精準(zhǔn)切片? ? 在數(shù)據(jù)的世界里,時間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準(zhǔn) ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗:數(shù)據(jù)趨勢與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準(zhǔn)確捕捉數(shù)據(jù)的趨勢變化以及識別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認證作為國內(nèi)權(quán)威的數(shù)據(jù)分析能力認證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對策略? 長短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨特的門控機制,在 ...
2025-07-07統(tǒng)計學(xué)方法在市場調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場調(diào)研是企業(yè)洞察市場動態(tài)、了解消費者需求的重要途徑,而統(tǒng)計學(xué)方法則是市場調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當(dāng)下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準(zhǔn)確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03