
大數(shù)據(jù)的核心是云技術(shù)和BI
關(guān)于大數(shù)據(jù)和云計(jì)算的關(guān)系人們通常會(huì)有誤解。而且也會(huì)把它們混起來(lái)說(shuō),分別做一句話直白解釋就是:云計(jì)算就是硬件資源的虛擬化;大數(shù)據(jù)就是海量數(shù)據(jù)的高效處理。如果做一個(gè)更形象的解釋,云計(jì)算相當(dāng)于我們的計(jì)算機(jī)和操作系統(tǒng),將大量的硬件資源虛擬化之后再進(jìn)行分配使用;大數(shù)據(jù)則相當(dāng)于海量數(shù)據(jù)的“數(shù)據(jù)庫(kù)”。
整體來(lái)看,未來(lái)的趨勢(shì)是,云計(jì)算作為計(jì)算資源的底層,支撐著上層的大數(shù)據(jù)處理,而大數(shù)據(jù)的發(fā)展趨勢(shì)是,實(shí)時(shí)交互式的查詢效率和分析能力,當(dāng)前的大數(shù)據(jù)處理一直在向著近似于傳統(tǒng)數(shù)據(jù)庫(kù)體驗(yàn)的方向發(fā)展。
大數(shù)據(jù)的4V特性,即類型復(fù)雜,海量,快速和價(jià)值,其總體架構(gòu)包括三層,數(shù)據(jù)存儲(chǔ),數(shù)據(jù)處理和數(shù)據(jù)分析。類型復(fù)雜和海量由數(shù)據(jù)存儲(chǔ)層解決,快速和時(shí)效性要求由數(shù)據(jù)處理層解決,價(jià)值由數(shù)據(jù)分析層解決。數(shù)據(jù)先要通過(guò)存儲(chǔ)層存儲(chǔ)下來(lái),然后根據(jù)數(shù)據(jù)需求和目標(biāo)來(lái)建立相應(yīng)的數(shù)據(jù)模型和數(shù)據(jù)分析指標(biāo)體系對(duì)數(shù)據(jù)進(jìn)行分析產(chǎn)生價(jià)值。而中間的時(shí)效性又通過(guò)中間數(shù)據(jù)處理層提供的強(qiáng)大的并行計(jì)算和分布式計(jì)算能力來(lái)完成。三層相互配合,讓大數(shù)據(jù)最終產(chǎn)生價(jià)值。
數(shù)據(jù)有很多分法,有結(jié)構(gòu)化,半結(jié)構(gòu)化,非結(jié)構(gòu)化;也有元數(shù)據(jù),主數(shù)據(jù),業(yè)務(wù)數(shù)據(jù);還可以分為GIS,視頻,文件,語(yǔ)音,業(yè)務(wù)交易類各種數(shù)據(jù)。傳統(tǒng)的結(jié)構(gòu)化數(shù)據(jù)庫(kù)已經(jīng)無(wú)法滿足數(shù)據(jù)多樣性的存儲(chǔ)要求,因此在RDBMS基礎(chǔ)上增加了兩種類型,一種是hdfs可以直接應(yīng)用于非結(jié)構(gòu)化文件存儲(chǔ),一種是nosql類數(shù)據(jù)庫(kù),可以應(yīng)用于結(jié)構(gòu)化和半結(jié)構(gòu)化數(shù)據(jù)存儲(chǔ)。
從存儲(chǔ)層的搭建來(lái)說(shuō),關(guān)系型數(shù)據(jù)庫(kù),NoSQL數(shù)據(jù)庫(kù)和hdfs分布式文件系統(tǒng)三種存儲(chǔ)方式都需要。業(yè)務(wù)應(yīng)用根據(jù)實(shí)際的情況選擇不同的存儲(chǔ)模式,但是為了業(yè)務(wù)的存儲(chǔ)和讀取方便性,我們可以對(duì)存儲(chǔ)層進(jìn)一步的封裝,形成一個(gè)統(tǒng)一的共享存儲(chǔ)服務(wù)層,簡(jiǎn)化這種操作。從用戶來(lái)講并不關(guān)心底層存儲(chǔ)細(xì)節(jié),只關(guān)心數(shù)據(jù)的存儲(chǔ)和讀取的方便性,通過(guò)共享數(shù)據(jù)存儲(chǔ)層可以實(shí)現(xiàn)在存儲(chǔ)上的應(yīng)用和存儲(chǔ)基礎(chǔ)設(shè)置的徹底解耦。
數(shù)據(jù)處理層核心解決問(wèn)題在于數(shù)據(jù)存儲(chǔ)出現(xiàn)分布式后帶來(lái)的數(shù)據(jù)處理上的復(fù)雜度,海量存儲(chǔ)后帶來(lái)了數(shù)據(jù)處理上的時(shí)效性要求,這些都是數(shù)據(jù)處理層要解決的問(wèn)題。
在傳統(tǒng)的云相關(guān)技術(shù)架構(gòu)上,可以將hive,pig和hadoop-mapreduce框架相關(guān)的技術(shù)內(nèi)容全部劃入到數(shù)據(jù)處理層的能力。原來(lái)我思考的是將hive劃入到數(shù)據(jù)分析層能力不合適,因?yàn)閔ive重點(diǎn)還是在真正處理下的復(fù)雜查詢的拆分,查詢結(jié)果的重新聚合,而mapreduce本身又實(shí)現(xiàn)真正的分布式處理能力。
mapreduce只是實(shí)現(xiàn)了一個(gè)分布式計(jì)算的框架和邏輯,而真正的分析需求的拆分,分析結(jié)果的匯總和合并還是需要hive層的能力整合。最終的目的很簡(jiǎn)單,即支持分布式架構(gòu)下的時(shí)效性要求。
數(shù)據(jù)分析層
最后回到分析層,分析層重點(diǎn)是真正挖掘大數(shù)據(jù)的價(jià)值所在,而價(jià)值的挖掘核心又在于數(shù)據(jù)分析和挖掘。那么數(shù)據(jù)分析層核心仍然在于傳統(tǒng)的BI分析的內(nèi)容。包括數(shù)據(jù)的維度分析,數(shù)據(jù)的切片,數(shù)據(jù)的上鉆和下鉆,cube等。
數(shù)據(jù)分析我只關(guān)注兩個(gè)內(nèi)容,一個(gè)就是傳統(tǒng)數(shù)據(jù)倉(cāng)庫(kù)下的數(shù)據(jù)建模,在該數(shù)據(jù)模型下需要支持上面各種分析方法和分析策略;其次是根據(jù)業(yè)務(wù)目標(biāo)和業(yè)務(wù)需求建立的KPI指標(biāo)體系,對(duì)應(yīng)指標(biāo)體系的分析模型和分析方法。解決這兩個(gè)問(wèn)題基本解決數(shù)據(jù)分析的問(wèn)題。
傳統(tǒng)的BI分析通過(guò)大量的ETL數(shù)據(jù)抽取和集中化,形成一個(gè)完整的數(shù)據(jù)倉(cāng)庫(kù),而基于大數(shù)據(jù)的BI分析,可能并沒(méi)有一個(gè)集中化的數(shù)據(jù)倉(cāng)庫(kù),或者將數(shù)據(jù)倉(cāng)庫(kù)本身也是分布式的了,BI分析的基本方法和思路并沒(méi)有變化,但是落地到執(zhí)行的數(shù)據(jù)存儲(chǔ)和數(shù)據(jù)處理方法卻發(fā)生了大變化。
談了這么多,核心還是想說(shuō)明大數(shù)據(jù)兩大核心為云技術(shù)和BI,離開(kāi)云技術(shù)大數(shù)據(jù)沒(méi)有根基和落地可能,離開(kāi)BI和價(jià)值,大數(shù)據(jù)又變化為舍本逐末,丟棄關(guān)鍵目標(biāo)。簡(jiǎn)單總結(jié)就是大數(shù)據(jù)目標(biāo)驅(qū)動(dòng)是BI,大數(shù)據(jù)實(shí)施落地式云技術(shù)。
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無(wú)論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫(kù)管理中,“大表” 始終是性能優(yōu)化繞不開(kāi)的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫(kù)表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開(kāi)始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫(kù)表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫(kù))處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場(chǎng)景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對(duì)象的 text 與 content:區(qū)別、場(chǎng)景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請(qǐng)求開(kāi)發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫(kù)表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請(qǐng)求工具對(duì)比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請(qǐng)求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問(wèn)題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問(wèn)題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營(yíng)問(wèn)題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過(guò)程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營(yíng)銷案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見(jiàn)頂” 的當(dāng)下,精準(zhǔn)營(yíng)銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價(jià)值 在數(shù)據(jù)驅(qū)動(dòng)決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實(shí)踐到業(yè)務(wù)價(jià)值挖掘 在數(shù)據(jù)分析場(chǎng)景中,聚類分析作為 “無(wú)監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價(jià)值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡(jiǎn)單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10