99999久久久久久亚洲,欧美人与禽猛交狂配,高清日韩av在线影院,一个人在线高清免费观看,啦啦啦在线视频免费观看www

熱線(xiàn)電話(huà):13121318867

登錄
首頁(yè)精彩閱讀python中numpy的矩陣、多維數(shù)組的用法
python中numpy的矩陣、多維數(shù)組的用法
2018-08-14
收藏

pythonnumpy的矩陣、多維數(shù)組的用法

1. 引言

最近在將一個(gè)算法由matlab轉(zhuǎn)成python,初學(xué)python,很多地方還不熟悉,總體感覺(jué)就是上手容易,實(shí)際上很優(yōu)雅地用python還是蠻難的。目前為止,覺(jué)得就算法仿真研究而言,還是matlab用得特別舒服,可能是比較熟悉的緣故吧。matlab直接集成了很多算法工具箱,函數(shù)查詢(xún)、調(diào)用、變量查詢(xún)等非常方便,或許以后用久了python也會(huì)感覺(jué)很好用。與python相比,最喜歡的莫過(guò)于可以直接選中某段代碼執(zhí)行了,操作方便,python也可以實(shí)現(xiàn),就是感覺(jué)不是很方便。
言歸正傳,做算法要用到很多的向量和矩陣運(yùn)算操作,這些嘛在matlab里面已經(jīng)很熟悉了,但用python的時(shí)候需要用一個(gè)查一個(gè),挺煩的,所以在此稍作總結(jié),后續(xù)使用過(guò)程中會(huì)根據(jù)使用體驗(yàn)更新。
python的矩陣運(yùn)算主要依賴(lài)numpy包,scipy包以numpy為基礎(chǔ),大大擴(kuò)展了后者的運(yùn)算能力。
2. 創(chuàng)建一般的多維數(shù)組
import numpy as np
 
a = np.array([1,2,3], dtype=int) # 創(chuàng)建1*3維數(shù)組 array([1,2,3])
 
type(a) # numpy.ndarray類(lèi)型
 
a.shape # 維數(shù)信息(3L,)
 
a.dtype.name # 'int32'
 
a.size # 元素個(gè)數(shù):3
 
a.itemsize #每個(gè)元素所占用的字節(jié)數(shù)目:4
 
b=np.array([[1,2,3],[4,5,6]],dtype=int) # 創(chuàng)建2*3維數(shù)組 array([[1,2,3],[4,5,6]])
 
b.shape # 維數(shù)信息(2L,3L)
 
b.size # 元素個(gè)數(shù):6
 
b.itemsize # 每個(gè)元素所占用的字節(jié)數(shù)目:4
 
 
c=np.array([[1,2,3],[4,5,6]],dtype='int16') # 創(chuàng)建2*3維數(shù)組 array([[1,2,3],[4,5,6]],dtype=int16)
 
c.shape # 維數(shù)信息(2L,3L)
 
c.size # 元素個(gè)數(shù):6
 
c.itemsize # 每個(gè)元素所占用的字節(jié)數(shù)目:2
 
c.ndim # 維數(shù)
 
 
d=np.array([[1,2,3],[4,5,6]],dtype=complex) # 復(fù)數(shù)二維數(shù)組
 
d.itemsize # 每個(gè)元素所占用的字節(jié)數(shù)目:16
 
d.dtype.name # 元素類(lèi)型:'complex128'

3. 創(chuàng)建特殊類(lèi)型的多維數(shù)組     
a1 = np.zeros((3,4)) # 創(chuàng)建3*4全零二維數(shù)組
 
輸出:
 
array([[ 0., 0., 0., 0.],
 
  [ 0., 0., 0., 0.],
 
  [ 0., 0., 0., 0.]])
 
a1.dtype.name # 元素類(lèi)型:'float64'
 
a1.size # 元素個(gè)數(shù):12
 
a1.itemsize # 每個(gè)元素所占用的字節(jié)個(gè)數(shù):8
 
 
 
 
 
a2 = np.ones((2,3,4), dtype=np.int16) # 創(chuàng)建2*3*4全1三維數(shù)組
 
a2 = np.ones((2,3,4), dtype='int16')  # 創(chuàng)建2*3*4全1三維數(shù)組
 
輸出:
 
array([[[1, 1, 1, 1],
 
  [1, 1, 1, 1],
 
  [1, 1, 1, 1]],
 
 
 
  [[1, 1, 1, 1],
 
  [1, 1, 1, 1],
 
  [1, 1, 1, 1]]], dtype=int16)
 
 
 
 
 
a3 = np.empty((2,3)) # 創(chuàng)建2*3的未初始化二維數(shù)組
 
輸出:(may vary)
 
array([[ 1., 2., 3.],
 
  [ 4., 5., 6.]])
 
 
 
a4 = np.arange(10,30,5) # 初始值10,結(jié)束值:30(不包含),步長(zhǎng):5
 
輸出:array([10, 15, 20, 25])
 
a5 = np.arange(0,2,0.3) # 初始值0,結(jié)束值:2(不包含),步長(zhǎng):0.2
 
輸出:array([ 0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8])
 
 
from numpy import pi
 
np.linspace(0, 2, 9) # 初始值0,結(jié)束值:2(包含),元素個(gè)數(shù):9
 
輸出:
 
array([ 0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. ])
 
x = np.linspace(0, 2*pi, 9)
 
輸出:
 
array([ 0.  , 0.78539816, 1.57079633, 2.35619449, 3.14159265,
 
  3.92699082, 4.71238898, 5.49778714, 6.28318531])
 
a = np.arange(6)
 
輸出:
 
array([0, 1, 2, 3, 4, 5])
 
b = np.arange(12).reshape(4,3)
 
輸出:
 
array([[ 0, 1, 2],
 
  [ 3, 4, 5],
 
  [ 6, 7, 8],
 
  [ 9, 10, 11]])
 
c = np.arange(24).reshape(2,3,4)
 
輸出:
 
array([[[ 0, 1, 2, 3],
 
  [ 4, 5, 6, 7],
 
  [ 8, 9, 10, 11]],
 
  [[12, 13, 14, 15],
 
  [16, 17, 18, 19],
 
  [20, 21, 22, 23]]]) 

使用numpy.set_printoptions可以設(shè)置numpy變量的打印格式

在ipython環(huán)境下,使用help(numpy.set_printoptions)查詢(xún)使用幫助和示例

4. 多維數(shù)組的基本操作

加法和減法操作要求操作雙方的維數(shù)信息一致,均為M*N為數(shù)組方可正確執(zhí)行操作。    
a = np.arange(4)
 
輸出:
 
array([0, 1, 2, 3])
 
b = a**2
 
輸出:
 
array([0, 1, 4, 9])
 
c = 10*np.sin(a)
 
輸出:
 
 array([ 0.  , 8.41470985, 9.09297427, 1.41120008])
 
 
 
 
 
n < 35
 
輸出:
 
array([ True, True, True, True], dtype=bool)
 
 
 
A = np.array([[1,1],[0,1]])
 
B = np.array([[2,0],[3,4]])
 
C = A * B # 元素點(diǎn)乘
 
輸出:
 
array([[2, 0],
 
  [0, 4]])
 
D = A.dot(B) # 矩陣乘法
 
輸出:
 
array([[5, 4],
 
  [3, 4]])
 
E = np.dot(A,B) # 矩陣乘法
 
輸出:
 
array([[5, 4],
 
  [3, 4]])

多維數(shù)組操作過(guò)程中的類(lèi)型轉(zhuǎn)換

When operating with arrays of different types, the type of the resulting array corresponds to the more general or precise one (a behavior known as upcasting)

即操作不同類(lèi)型的多維數(shù)組時(shí),結(jié)果自動(dòng)轉(zhuǎn)換為精度更高類(lèi)型的數(shù)組,即upcasting    
a = np.ones((2,3),dtype=int)  # int32
 
b = np.random.random((2,3))  # float64
 
b += a # 正確
 
a += b # 錯(cuò)誤     
a = np.ones(3,dtype=np.int32)
 
b = np.linspace(0,pi,3)
 
c = a + b
 
d = np.exp(c*1j)
 
輸出:
 
array([ 0.54030231+0.84147098j, -0.84147098+0.54030231j,
 
  -0.54030231-0.84147098j])
 
d.dtype.name
 
輸出:
 
 'complex128'

多維數(shù)組的一元操作,如求和、求最小值、最大值等    
a = np.random.random((2,3))
 
a.sum()
 
a.min()
 
a.max()
 
 
 
 
 
b = np.arange(12).reshape(3,4)
 
輸出:
 
array([[ 0, 1, 2, 3],
 
  [ 4, 5, 6, 7],
 
  [ 8, 9, 10, 11]])
 
b.sum(axis=0) # 按列求和
 
輸出:
 
array([12, 15, 18, 21])
 
b.sum(axis=1) # 按行求和
 
輸出:
 
array([ 6, 22, 38])
 
b.cumsum(axis=0) # 按列進(jìn)行元素累加
 
輸出:
 
array([[ 0, 1, 2, 3],
 
  [ 4, 6, 8, 10],
 
  [12, 15, 18, 21]])
 
b.cumsum(axis=1) # 按行進(jìn)行元素累加
 
輸出:
 
array([[ 0, 1, 3, 6],
 
  [ 4, 9, 15, 22],
 
  [ 8, 17, 27, 38]])
 
 
universal functions
 
 
B = np.arange(3)
 
np.exp(B)
 
np.sqrt(B)
 
C = np.array([2.,-1.,4.])
 
np.add(B,C)

其他的ufunc函數(shù)包括:

all, any, apply_along_axis, argmax, argmin, argsort, average, bincount, ceil, clip, conj, corrcoef, cov, cross, cumprod, cumsum, diff, dot, floor,inner, lexsort, max, maximum, mean, median, min, minimum, nonzero, outer, prod, re, round, sort, std, sum, trace, transpose, var,vdot, vectorize, where

5. 數(shù)組索引、切片和迭代    
a = np.arange(10)**3
 
a[2]
 
a[2:5]
 
a[::-1] # 逆序輸出
 
for i in a:
 
 print (i**(1/3.))     
def f(x,y):
 
 return 10*x+y
 
b = np.fromfunction(f,(5,4),dtype=int)
 
b[2,3]
 
b[0:5,1]
 
b[:,1]
 
b[1:3,:]
 
b[-1]     
c = np.array([[[0,1,2],[10,11,12]],[[100,101,102],[110,111,112]]])
 
輸出:
 
array([[[ 0, 1, 2],
 
  [ 10, 11, 12]],
 
 
 
  [[100, 101, 102],
 
  [110, 111, 112]]])
 
c.shape
 
輸出:
 
(2L, 2L, 3L)
 
c[0,...]
 
c[0,:,:]
 
輸出:
 
array([[ 0, 1, 2],
 
  [10, 11, 12]])
 
c[:,:,2]
 
c[...,2]
 
輸出:
 
array([[ 2, 12],
 
  [102, 112]])
 
 
 
for row in c:
 
 print(row)
 
 
 
for element in c.flat:
 
 print(element)     
a = np.floor(10*np.random.random((3,4)))
 
輸出:
 
array([[ 3., 9., 8., 4.],
 
  [ 2., 1., 4., 6.],
 
  [ 0., 6., 0., 2.]])
 
a.ravel()
 
輸出:
 
array([ 3., 9., 8., ..., 6., 0., 2.])
 
a.reshape(6,2)
 
輸出:
 
array([[ 3., 9.],
 
  [ 8., 4.],
 
  [ 2., 1.],
 
  [ 4., 6.],
 
  [ 0., 6.],
 
  [ 0., 2.]])
 
a.T
 
輸出:
 
array([[ 3., 2., 0.],
 
  [ 9., 1., 6.],
 
  [ 8., 4., 0.],
 
  [ 4., 6., 2.]])
 
a.T.shape
 
輸出:
 
(4L, 3L)
 
a.resize((2,6))
 
輸出:
 
array([[ 3., 9., 8., 4., 2., 1.],
 
  [ 4., 6., 0., 6., 0., 2.]])
 
a.shape
 
輸出:
 
(2L, 6L)
 
a.reshape(3,-1)
 
輸出:
 
array([[ 3., 9., 8., 4.],
 
  [ 2., 1., 4., 6.],
 
  [ 0., 6., 0., 2.]])

詳查以下函數(shù):

ndarray.shape, reshape, resize, ravel

6. 組合不同的多維數(shù)組    
a = np.floor(10*np.random.random((2,2)))
 
輸出:
 
array([[ 5., 2.],
 
  [ 6., 2.]])
 
b = np.floor(10*np.random.random((2,2)))
 
輸出:
 
array([[ 0., 2.],
 
  [ 4., 1.]])
 
np.vstack((a,b))
 
輸出:
 
array([[ 5., 2.],
 
  [ 6., 2.],
 
  [ 0., 2.],
 
  [ 4., 1.]])
 
np.hstack((a,b))
 
輸出:
 
array([[ 5., 2., 0., 2.],
 
  [ 6., 2., 4., 1.]])
 
 
 
 
 
from numpy import newaxis
 
np.column_stack((a,b))
 
輸出:
 
array([[ 5., 2., 0., 2.],
 
  [ 6., 2., 4., 1.]])
 
 
 
 
 
a = np.array([4.,2.])
 
b = np.array([2.,8.])
 
a[:,newaxis]
 
輸出:
 
array([[ 4.],
 
  [ 2.]])
 
b[:,newaxis]
 
輸出:
 
array([[ 2.],
 
  [ 8.]])
 
np.column_stack((a[:,newaxis],b[:,newaxis]))
 
輸出:
 
array([[ 4., 2.],
 
  [ 2., 8.]])
 
np.vstack((a[:,newaxis],b[:,newaxis]))
 
輸出:
 
array([[ 4.],
 
  [ 2.],
 
  [ 2.],
 
  [ 8.]])
 
np.r_[1:4,0,4]
 
輸出:
 
array([1, 2, 3, 0, 4])
 
np.c_[np.array([[1,2,3]]),0,0,0,np.array([[4,5,6]])]
 
輸出:
 
array([[1, 2, 3, 0, 0, 0, 4, 5, 6]])

詳細(xì)使用請(qǐng)查詢(xún)以下函數(shù):

hstack, vstack, column_stack, concatenate, c_, r_

7. 將較大的多維數(shù)組分割成較小的多維數(shù)組    
a = np.floor(10*np.random.random((2,12)))
 
輸出:
 
array([[ 9., 7., 9., ..., 3., 2., 4.],
 
  [ 5., 3., 3., ..., 9., 7., 7.]])
 
np.hsplit(a,3)
 
輸出:
 
[array([[ 9., 7., 9., 6.],
 
  [ 5., 3., 3., 1.]]), array([[ 7., 2., 1., 6.],
 
  [ 7., 5., 0., 2.]]), array([[ 9., 3., 2., 4.],
 
  [ 3., 9., 7., 7.]])]
 
np.hsplit(a,(3,4))
 
輸出:
 
[array([[ 9., 7., 9.],
 
  [ 5., 3., 3.]]), array([[ 6.],
 
  [ 1.]]), array([[ 7., 2., 1., ..., 3., 2., 4.],
 
  [ 7., 5., 0., ..., 9., 7., 7.]])]

實(shí)現(xiàn)類(lèi)似功能的函數(shù)包括:

hsplit,vsplit,array_split

8.  多維數(shù)組的復(fù)制操作    
a = np.arange(12)
 
輸出:
 
array([ 0, 1, 2, ..., 9, 10, 11])
 
 
 
not copy at all
 
 
 
b = a
 
b is a # True
 
b.shape = 3,4
 
a.shape # (3L,4L)
 
 
 
def f(x) # Python passes mutable objects as references, so function calls make no copy.
 
 print(id(x)) # id是python對(duì)象的唯一標(biāo)識(shí)符
 
 
 
id(a) # 111833936L
 
id(b) # 111833936L
 
f(a)  # 111833936L
 
 
 
 
 
淺復(fù)制
c = a.view()
 
c is a # False
 
c.base is a # True
 
c.flags.owndata # False
 
c.shape = 2,6
 
a.shape # (3L,4L)
 
c[0,4] = 1234
 
print(a)
 
輸出:
 
array([[ 0, 1, 2, 3],
 
  [1234, 5, 6, 7],
 
  [ 8, 9, 10, 11]])
 
s = a[:,1:3]
 
s[:] = 10
 
print(a)
 
輸出:
 
array([[ 0, 10, 10, 3],
 
  [1234, 10, 10, 7],
 
  [ 8, 10, 10, 11]])
 
 
 
 
 
深復(fù)制
d = a.copy()
 
d is a # False
 
d.base is a # False
 
d[0,0] = 9999
 
print(a)
 
輸出:
 
array([[ 0, 10, 10, 3],
 
  [1234, 10, 10, 7],
 
  [ 8, 10, 10, 11]])

numpy基本函數(shù)和方法一覽

arange, array, copy, empty, empty_like, eye, fromfile, fromfunction, identity, linspace, logspace, mgrid, ogrid, ones, ones_like, r, zeros,zeros_like

Conversions

ndarray.astype, atleast_1d, atleast_2d, atleast_3d, mat

Manipulations

array_split, column_stack, concatenate, diagonal, dsplit, dstack, hsplit, hstack, ndarray.item, newaxis, ravel, repeat, reshape, resize,squeeze, swapaxes, take, transpose, vsplit, vstack

Questionsall, any, nonzero, where

Ordering

argmax, argmin, argsort, max, min, ptp, searchsorted, sort

Operations

choose, compress, cumprod, cumsum, inner, ndarray.fill, imag, prod, put, putmask, real, sum

Basic Statistics

cov, mean, std, var

Basic Linear Algebra

cross, dot, outer, linalg.svd, vdot

完整的函數(shù)和方法一覽表鏈接:
9. 特殊的索引技巧
    
a = np.arange(12)**2
輸出:
array([ 0, 1, 4, ..., 81, 100, 121])
i = np.array([1,1,3,8,5])
a[i]
輸出:
array([ 1, 1, 9, 64, 25])
 
j = np.array([[3,4],[9,7]])
a[j]
輸出:
array([[ 9, 16],
  [81, 49]])
 
 
palette = np.array([[0,0,0],[255,0,0],[0,255,0],[0,0,255],[255,255,255]])
image = np.array([[0,1,2,0],[0,3,4,0]])
palette[image]
輸出:
array([[[ 0, 0, 0],
  [255, 0, 0],
  [ 0, 255, 0],
  [ 0, 0, 0]],
 
  [[ 0, 0, 0],
  [ 0, 0, 255],
  [255, 255, 255],
  [ 0, 0, 0]]])
 
 
i = np.array([[0,1],[1,2]])
j = np.array([[2,1],[3,3]])
a[i,j]
輸出:
array([[ 2, 5],
  [ 7, 11]])
l = [i,j]
a[l]
輸出:
array([[ 2, 5],
  [ 7, 11]])
 
 
a[i,2]
輸出:
array([[ 2, 6],
  [ 6, 10]])
 
a[:,j]
輸出:
array([[[ 2, 1],
  [ 3, 3]],
 
  [[ 6, 5],
  [ 7, 7]],
 
  [[10, 9],
  [11, 11]]])    
s = np.array([i,j])
print(s)
array([[[0, 1],
  [1, 2]],
 
  [[2, 1],
  [3, 3]]])
 
a[tuple(s)]
輸出:
array([[ 2, 5],
  [ 7, 11]])
print(tupe(s))
輸出:
(array([[0, 1],
  [1, 2]]), array([[2, 1],
  [3, 3]]))

10. 尋找最大值/最小值及其對(duì)應(yīng)索引值    
time = np.linspace(20, 145, 5)
輸出:
 array([ 20. , 51.25, 82.5 , 113.75, 145. ])
 
data = np.sin(np.arange(20)).reshape(5,4)
輸出:
array([[ 0.  , 0.84147098, 0.90929743, 0.14112001],
  [-0.7568025 , -0.95892427, -0.2794155 , 0.6569866 ],
  [ 0.98935825, 0.41211849, -0.54402111, -0.99999021],
  [-0.53657292, 0.42016704, 0.99060736, 0.65028784],
  [-0.28790332, -0.96139749, -0.75098725, 0.14987721]])
 
ind = data.argmax(axis=0)
輸出:
array([2, 0, 3, 1], dtype=int64)
 
time_max = time[ind]
輸出:
array([ 82.5 , 20. , 113.75, 51.25])
 
data_max = data[ind, xrange(data.shape[1])]
輸出:
array([ 0.98935825, 0.84147098, 0.99060736, 0.6569866 ])
 
np.all(data_max == data.max(axis=0))
輸出:
True
 
 
 
a = np.arange(5)
a[[1,3,4]] = 0
print(a)
輸出:
array([0, 0, 2, 0, 0])
a = np.arange(5)
a[[0,0,2]] = [1,2,3]
print(a)
輸出:
array([2, 1, 3, 3, 4])
 
 
a = np.arange(5)
a[[0,0,2]] += 1
print(a)
輸出:
array([1, 1, 3, 3, 4])    
a = np.arange(12).reshape(3,4)
 b = a > 4
輸出:
array([[False, False, False, False],
  [False, True, True, True],
  [ True, True, True, True]], dtype=bool)
 
a[b]
輸出:
array([ 5, 6, 7, 8, 9, 10, 11])
 
a[b] = 0
print(a)
輸出:
array([[0, 1, 2, 3],
  [4, 0, 0, 0],
  [0, 0, 0, 0]])    
a = np.arange(12).reshape(3,4)
b1 = np.array([False,True,True])
b2 = n.array([True,False,True,False])
a[b1,:]
輸出:
array([[ 4, 5, 6, 7],
  [ 8, 9, 10, 11]])
 
a[b1]
輸出:
array([[ 4, 5, 6, 7],
  [ 8, 9, 10, 11]])
 
a[:,b2]
輸出:
array([[ 0, 2],
  [ 4, 6],
  [ 8, 10]])
 
a[b1,b2]
輸出:
array([ 4, 10])

11. ix_() function    
a = np.array([2,3,4,5])
b = np.array([8,5,4])
c = np.array([5,4,6,8,3])
ax,bx,cx = np.ix_(a,b,c)
print(ax) # (4L, 1L, 1L)
輸出:
array([[[2]],
 
  [[3]],
 
  [[4]],
 
  [[5]]])
print(bx) # (1L, 3L, 1L)
輸出:
array([[[8],
  [5],
  [4]]])
print(cx) # (1L, 1L, 5L)
輸出:
array([[[5, 4, 6, 8, 3]]])
 
 
result = ax + bx*cx
輸出:
array([[[42, 34, 50, 66, 26],
  [27, 22, 32, 42, 17],
  [22, 18, 26, 34, 14]],
 
  [[43, 35, 51, 67, 27],
  [28, 23, 33, 43, 18],
  [23, 19, 27, 35, 15]],
 
  [[44, 36, 52, 68, 28],
  [29, 24, 34, 44, 19],
  [24, 20, 28, 36, 16]],
 
  [[45, 37, 53, 69, 29],
  [30, 25, 35, 45, 20],
  [25, 21, 29, 37, 17]]])
 
result[3,2,4]
輸出:17

12. 線(xiàn)性代數(shù)運(yùn)算    
a = np.array([[1.,2.],[3.,4.]])
a.transpose() # 轉(zhuǎn)置
np.linalg.inv(a) # 求逆
u = np.eye(2) # 產(chǎn)生單位矩陣
np.dot(a,a) # 矩陣乘積
np.trace(a) # 求矩陣的跡
y = np.array([5.],[7.]])
np.linalg.solve(a,y) # 求解線(xiàn)性方程組
np.linalg.eig(a) # 特征分解

“Automatic” Reshaping
    
a = np.arange(30)
a.shape = 2,-1,3
a.shape # (2L, 5L, 3L)
print(a)
array([[[ 0, 1, 2],
  [ 3, 4, 5],
  [ 6, 7, 8],
  [ 9, 10, 11],
  [12, 13, 14]],
 
  [[15, 16, 17],
  [18, 19, 20],
  [21, 22, 23],
  [24, 25, 26],
  [27, 28, 29]]])
    
x = np.arange(0,10,2)
y = np.arange(5)
m = np.vstack([x,y])
輸出:
array([[0, 2, 4, 6, 8],
  [0, 1, 2, 3, 4]])
n = np.hstack([x,y])
輸出:
array([0, 2, 4, 6, 8, 0, 1, 2, 3, 4])

13. 矩陣的創(chuàng)建    
a = np.array([1,2,3])
a1 = np.mat(a)
輸出:
matrix([[1, 2, 3]])
type(a1)
輸出:
numpy.matrixlib.defmatrix.matrix
a1.shape
輸出:
(1L, 3L)
a.shape
輸出:
(3L,)
 
b=np.matrix([1,2,3])
輸出:
matrix([[1, 2, 3]])
 
from numpy import *
data1 = mat(zeros((3,3)))
data2 = mat(ones((2,4)))
data3 = mat(random.rand(2,2))
data4 = mat(random.randint(2,8,size=(2,5)))
data5 = mat(eye(2,2,dtype=int))

14. 常見(jiàn)的矩陣運(yùn)算    
a1 = mat([1,2])
a2 = mat([[1],[2]])
a3 = a1 * a2
print(a3)
輸出:
matrix([[5]])
 
print(a1*2)
輸出:
matrix([[2, 4]])
 
a1 = mat(eye(2,2)*0.5)
print(a1.I)
輸出:
matrix([[ 2., 0.],
  [ 0., 2.]])
 
 
a1 = mat([[1,2],[2,3],[4,2]])
a1.sum(axis=0)
輸出:
matrix([[7, 7]])
a1.sum(axis=1)
輸出:
matrix([[3],
  [5],
  [6]])
a1.max() # 求矩陣元素最大值
輸出:
4
a1.min() # 求矩陣元素最小值
輸出:
1
 
np.max(a1,0) # 求矩陣每列元素最大值
輸出:
matrix([[4, 3]])
np.max(a1,1) # 求矩陣每行元素最大值
輸出:
matrix([[2],
  [3],
  [4]])
 
 
a = mat(ones((2,2)))
b = mat(eye((2)))
c = hstack((a,b))
輸出:
matrix([[ 1., 1., 1., 0.],
  [ 1., 1., 0., 1.]])
d = vstack((a,b))
輸出:
matrix([[ 1., 1.],
  [ 1., 1.],
  [ 1., 0.],
  [ 0., 1.]])

15. 矩陣、數(shù)組、列表之間的互相轉(zhuǎn)換    
aa = [[1,2],[3,4],[5,6]]
bb = array(aa)
cc = mat(bb)
 
cc.getA() # 矩陣轉(zhuǎn)換為數(shù)組
cc.tolist() # 矩陣轉(zhuǎn)換為列表
bb.tolist() # 數(shù)組轉(zhuǎn)換為列表
 
 
# 當(dāng)列表為一維時(shí),情況有點(diǎn)特殊
aa = [1,2,3,4]
bb = array(aa)
輸出:
array([1, 2, 3, 4])
cc = mat(bb)
輸出:
matrix([[1, 2, 3, 4]])
 
cc.tolist()
輸出:
[[1, 2, 3, 4]]
 
bb.tolist()
輸出:
[1, 2, 3, 4]
 
cc.tolist()[0]
輸出:
[1, 2, 3, 4]

數(shù)據(jù)分析咨詢(xún)請(qǐng)掃描二維碼

若不方便掃碼,搜微信號(hào):CDAshujufenxi

數(shù)據(jù)分析師資訊
更多

OK
客服在線(xiàn)
立即咨詢(xún)
客服在線(xiàn)
立即咨詢(xún)
') } function initGt() { var handler = function (captchaObj) { captchaObj.appendTo('#captcha'); captchaObj.onReady(function () { $("#wait").hide(); }).onSuccess(function(){ $('.getcheckcode').removeClass('dis'); $('.getcheckcode').trigger('click'); }); window.captchaObj = captchaObj; }; $('#captcha').show(); $.ajax({ url: "/login/gtstart?t=" + (new Date()).getTime(), // 加隨機(jī)數(shù)防止緩存 type: "get", dataType: "json", success: function (data) { $('#text').hide(); $('#wait').show(); // 調(diào)用 initGeetest 進(jìn)行初始化 // 參數(shù)1:配置參數(shù) // 參數(shù)2:回調(diào),回調(diào)的第一個(gè)參數(shù)驗(yàn)證碼對(duì)象,之后可以使用它調(diào)用相應(yīng)的接口 initGeetest({ // 以下 4 個(gè)配置參數(shù)為必須,不能缺少 gt: data.gt, challenge: data.challenge, offline: !data.success, // 表示用戶(hù)后臺(tái)檢測(cè)極驗(yàn)服務(wù)器是否宕機(jī) new_captcha: data.new_captcha, // 用于宕機(jī)時(shí)表示是新驗(yàn)證碼的宕機(jī) product: "float", // 產(chǎn)品形式,包括:float,popup width: "280px", https: true // 更多配置參數(shù)說(shuō)明請(qǐng)參見(jiàn):http://docs.geetest.com/install/client/web-front/ }, handler); } }); } function codeCutdown() { if(_wait == 0){ //倒計(jì)時(shí)完成 $(".getcheckcode").removeClass('dis').html("重新獲取"); }else{ $(".getcheckcode").addClass('dis').html("重新獲取("+_wait+"s)"); _wait--; setTimeout(function () { codeCutdown(); },1000); } } function inputValidate(ele,telInput) { var oInput = ele; var inputVal = oInput.val(); var oType = ele.attr('data-type'); var oEtag = $('#etag').val(); var oErr = oInput.closest('.form_box').next('.err_txt'); var empTxt = '請(qǐng)輸入'+oInput.attr('placeholder')+'!'; var errTxt = '請(qǐng)輸入正確的'+oInput.attr('placeholder')+'!'; var pattern; if(inputVal==""){ if(!telInput){ errFun(oErr,empTxt); } return false; }else { switch (oType){ case 'login_mobile': pattern = /^1[3456789]\d{9}$/; if(inputVal.length==11) { $.ajax({ url: '/login/checkmobile', type: "post", dataType: "json", data: { mobile: inputVal, etag: oEtag, page_ur: window.location.href, page_referer: document.referrer }, success: function (data) { } }); } break; case 'login_yzm': pattern = /^\d{6}$/; break; } if(oType=='login_mobile'){ } if(!!validateFun(pattern,inputVal)){ errFun(oErr,'') if(telInput){ $('.getcheckcode').removeClass('dis'); } }else { if(!telInput) { errFun(oErr, errTxt); }else { $('.getcheckcode').addClass('dis'); } return false; } } return true; } function errFun(obj,msg) { obj.html(msg); if(msg==''){ $('.login_submit').removeClass('dis'); }else { $('.login_submit').addClass('dis'); } } function validateFun(pat,val) { return pat.test(val); }