
Python中的列表生成式與生成器學習教程
這篇文章主要介紹了Python中的列表生成式與生成器學習教程,Python中的Generator生成器比列表生成式功能更為強大,需要的朋友可以參考下
列表生成式
即創(chuàng)建列表的方式,最笨的方法就是寫循環(huán)逐個生成,前面也介紹過可以使用range()函數(shù)來生成,不過只能生成線性列表,下面看看更為高級的生成方式:
>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
寫列表生成式時,把要生成的元素x * x放到前面,后面跟for循環(huán),就可以把list創(chuàng)建出來,十分有用,多寫幾次,很快就可以熟悉這種語法。
你甚至可以在后面加上if判斷:
>>> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]
循環(huán)嵌套,全排列:
>>> [m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']
看一個簡單應(yīng)用,列出當前目錄下所有文件和目錄:
>>> import os
>>> [d for d in os.listdir('.')]
['README.md', '.git', 'image', 'os', 'lib', 'sublime-imfix', 'src']
前面也說過Python里循環(huán)中可以同時引用兩個變量,所以生成變量也可以:
>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> [k + '=' + v for k, v in d.iteritems()]
['y=B', 'x=A', 'z=C']
也可以通過一個list生成另一個list,例如把一個list中所有字符串變?yōu)樾懀?nbsp;
>>> L = ['Hello', 'World', 'IBM', 'Apple']
>>> [s.lower() for s in L]
['hello', 'world', 'ibm', 'apple']
但是這里有個問題,list中如果有其他非字符串類型,那么lower()會報錯,解決辦法:
>>> L = ['Hello', 'World', 'IBM', 'Apple', 12, 34]
>>> [s.lower() if isinstance(s,str) else s for s in L]
['hello', 'world', 'ibm', 'apple', 12, 34]
此外,列表生成式還有許多神奇用法,說明請看注釋:
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
list(range(1, 11))
# 生成1乘1,2乘2...10乘10
L = []
for x in range(1, 11):
L.append(x * x)
# 上面太麻煩,看下面
[x * x for x in range(1, 11)]
# [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
# 加上if,就可以篩選出僅偶數(shù)的平方
[x * x for x in range(1, 11) if x % 2 == 0]
# [4, 16, 36, 64, 100]
# 兩層循環(huán),可以生成全排列
[m + n for m in 'ABC' for n in 'XYZ']
# ['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']
# 列出當前目錄下的所有文件和目錄名
import os
[d for d in os.listdir('.')] # on.listdir可以列出文件和目錄
# 列表生成式也可以使用兩個變量來生成list:
d = {'x': 'A', 'y': 'B', 'z': 'C'}
[k + '=' + v for k, v in d.items()]
# ['x=A', 'z=C', 'y=B']
# 把一個list中所有的字符串變成小寫
L = ['Hello', 'World', 'IBM', 'Apple']
[s.lower() for s in L]
# ['hello', 'world', 'ibm', 'apple']
L1 = ['Hello', 'World', 18, 'Apple', None]
L2 = [s.lower() for s in L1 if isinstance(s, str)]
print(L2)
# ['hello', 'world', 'apple']
# isinstance函數(shù)可以判斷一個變量是不是字符串
生成器
列表生成式雖然強大,但是也會有一個問題,當我們想生成一個很大的列表時,會非常耗時,并且占用很大的存儲空間,關(guān)鍵是這里面的元素可能你只需要用到前面很少的一部分,大部分的空間和時間都浪費了。Python提供了一種邊計算邊使用的機制,稱為生成器(Generator),創(chuàng)建一個Generator最簡單的方法就是把[]改為():
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x7fe73eb85cd0>
如果要一個一個打印出來,可以通過generator的next()方法:
>>> g.next()
0
>>> g.next()
1
>>> g.next()
4
>>> g.next()
9
>>> g.next()
16
>>> g.next()
25
>>> g.next()
36
>>> g.next()
49
>>> g.next()
64
>>> g.next()
81
>>> g.next()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
其實generator object也是可迭代的,所以可以用循環(huán)打印,還不會報錯。
>>> g = (x * x for x in range(10))
>>> for n in g:
... print n
...
這是簡單的推算算法,但是如果算法比較復(fù)雜,寫在()里就不太合適了,我們可以換一種方式,使用函數(shù)來實現(xiàn)。
比如,著名的斐波拉契數(shù)列(Fibonacci),除第一個和第二個數(shù)外,任意一個數(shù)都可由前兩個數(shù)相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, …
斐波拉契數(shù)列用列表生成式寫不出來,但是,用函數(shù)把它打印出來卻很容易:
def fib(max):
n, a, b = 0, 0, 1
while n < max:
print b
a, b = b, a + b
n = n + 1
上面的函數(shù)可以輸出斐波那契數(shù)列的前N個數(shù),這個也是通過前面的數(shù)推算出后面的,所以可以把函數(shù)變成generator object,只需要把print b改為yield b即可。
def fib(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1
如果一個函數(shù)定義中包含了yield關(guān)鍵字,這個函數(shù)就不在是普通函數(shù),而是一個generator object。
>>> fib(6)
<generator object fib at 0x7fa1c3fcdaf0>
>>> fib(6).next()
1
所以要想調(diào)用這個函數(shù),需要使用next()函數(shù),并且遇到y(tǒng)ield語句返回(可以把yield理解為return):
def odd():
print 'step 1'
yield 1
print 'step 2'
yield 3
print 'step 3'
yield 5
看看調(diào)用輸出結(jié)果:
>>> o = odd()
>>> o.next()
step 1
1
>>> o.next()
step 2
3
>>> o.next()
step 3
5
>>> o.next()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
同樣也可以改為for循環(huán)語句輸出。例如:
def odd():
print 'step 1'
yield 1
print 'step 2'
yield 2
print 'step 3'
yield 3
if __name__ == '__main__':
o = odd()
while True:
try:
print o.next()
except:
break
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務(wù)價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導(dǎo)向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10