
Spark是什么?用Spark進(jìn)行數(shù)據(jù)分析
1什么是Apache Spark?
Apache Spark是一個(gè)為速度和通用目標(biāo)設(shè)計(jì)的集群計(jì)算平臺(tái)。
從速度的角度看,Spark從流行的MapReduce模型繼承而來(lái),可以更有效地支持多種類型的計(jì)算,如交互式查詢和流處理。速度在大數(shù)據(jù)集的處理中非常重要,它可以決定用戶可以交互式地處理數(shù)據(jù),還是等幾分鐘甚至幾小時(shí)。Spark為速度提供的一個(gè)重要特性是其可以在內(nèi)存中運(yùn)行計(jì)算,即使對(duì)基于磁盤的復(fù)雜應(yīng)用,Spark依然比MapReduce更有效。
從通用性來(lái)說(shuō),Spark可以處理之前需要多個(gè)獨(dú)立的分布式系統(tǒng)來(lái)處理的任務(wù),這些任務(wù)包括批處理應(yīng)用、交互式算法、交互式查詢和數(shù)據(jù)流。通過(guò)用同一個(gè)引擎支持這些任務(wù),Spark使得合并不同的處理類型變得簡(jiǎn)單,而合并操作在生產(chǎn)數(shù)據(jù)分析中頻繁使用。而且,Spark降低了維護(hù)不同工具的管理負(fù)擔(dān)。
Spark被設(shè)計(jì)的高度易訪問,用Python、Java、Scala和SQL提供簡(jiǎn)單的API,而且提供豐富的內(nèi)建庫(kù)。Spark也與其他大數(shù)據(jù)工具進(jìn)行了集成。特別地,Spark可以運(yùn)行在Hadoop的集群上,可以訪問任何Hadoop的數(shù)據(jù)源,包括Cassandra。2Spark 核心組件
Spark核心組件包含Spark的基本功能,有任務(wù)調(diào)度組件、內(nèi)存管理組件、容錯(cuò)恢復(fù)組件、與存儲(chǔ)系統(tǒng)交互的組件等。Spark核心組件提供了定義彈性分布式數(shù)據(jù)集(resilient distributed datasets,RDDs)的API,這組API是Spark主要的編程抽象。RDDs表示分布在多個(gè)不同機(jī)器節(jié)點(diǎn)上,可以被并行處理的數(shù)據(jù)集合。Spark核心組件提供許多API來(lái)創(chuàng)建和操作這些集合。
Spark SQLSpark SQL是Spark用來(lái)處理結(jié)構(gòu)化數(shù)據(jù)的包。它使得可以像Hive查詢語(yǔ)言(Hive Query Language, HQL)一樣通過(guò)SQL語(yǔ)句來(lái)查詢數(shù)據(jù),支持多種數(shù)據(jù)源,包括Hive表、Parquet和JSON。除了為Spark提供一個(gè)SQL接口外,Spark SQL允許開發(fā)人員將SQL查詢和由RDDs通過(guò)Python、Java和Scala支持的數(shù)據(jù)編程操作混合進(jìn)一個(gè)單一的應(yīng)用中,進(jìn)而將SQL與復(fù)雜的分析結(jié)合。與計(jì)算密集型環(huán)境緊密集成使得Spark SQL不同于任何其他開源的數(shù)據(jù)倉(cāng)庫(kù)工具。Spark SQL在Spark 1.0版本中引入Spark。
Shark是一個(gè)較老的由加利福尼亞大學(xué)和伯克利大學(xué)開發(fā)的Spark上的SQL項(xiàng)目,通過(guò)修改Hive而運(yùn)行在Spark上?,F(xiàn)在已經(jīng)被Spark SQL取代,以提供與Spark引擎和API更好的集成。
Spark流(Spark Streaming)Spark流作為Spark的一個(gè)組件,可以處理實(shí)時(shí)流數(shù)據(jù)。流數(shù)據(jù)的例子有生產(chǎn)環(huán)境的Web服務(wù)器生成的日志文件,用戶向一個(gè)Web服務(wù)請(qǐng)求包含狀態(tài)更新的消息。Spark流提供一個(gè)和Spark核心RDD API非常匹配的操作數(shù)據(jù)流的API,使得編程人員可以更容易地了解項(xiàng)目,并且可以在操作內(nèi)存數(shù)據(jù)、磁盤數(shù)據(jù)、實(shí)時(shí)數(shù)據(jù)的應(yīng)用之間快速切換。Spark流被設(shè)計(jì)為和Spark核心組件提供相同級(jí)別的容錯(cuò)性,吞吐量和可伸縮性。
MLlibSpark包含一個(gè)叫做MLlib的關(guān)于機(jī)器學(xué)習(xí)的庫(kù)。MLlib提供多種類型的機(jī)器學(xué)習(xí)算法,包括分類、回歸、聚類和協(xié)同過(guò)濾,并支持模型評(píng)估和數(shù)據(jù)導(dǎo)入功能。MLlib也提供一個(gè)低層的機(jī)器學(xué)習(xí)原語(yǔ),包括一個(gè)通用的梯度下降優(yōu)化算法。所有這些方法都可以應(yīng)用到一個(gè)集群上。
GraphXGraphX是一個(gè)操作圖(如社交網(wǎng)絡(luò)的好友圖)和執(zhí)行基于圖的并行計(jì)算的庫(kù)。與Spark流和Spark
SQL類似,GraphX擴(kuò)展了Spark RDD
API,允許我們用和每個(gè)節(jié)點(diǎn)和邊綁定的任意屬性來(lái)創(chuàng)建一個(gè)有向圖。GraphX也提供了各種各樣的操作圖的操作符,以及關(guān)于通用圖算法的一個(gè)庫(kù)。
集群管理器Cluster Managers在底層,Spark可以有效地從一個(gè)計(jì)算節(jié)點(diǎn)擴(kuò)展到成百上千個(gè)節(jié)點(diǎn)。為了在最大化靈活性的同時(shí)達(dá)到這個(gè)目標(biāo),Spark可以運(yùn)行在多個(gè)集群管理器上,包括Hadoop YARN,Apache Mesos和一個(gè)包含在Spark中的叫做獨(dú)立調(diào)度器的簡(jiǎn)易的集群管理器。如果你在一個(gè)空的機(jī)器群上安裝Spark,獨(dú)立調(diào)度器提供一個(gè)簡(jiǎn)單的方式;如果你已經(jīng)有一個(gè)Hadoop YARN或Mesos集群,Spark支持你的應(yīng)用允許在這些集群管理器上。第七章給出了不同的選擇,以及如何選擇正確的集群管理器。3誰(shuí)使用Spark?用Spark做什么?由于Spark是一個(gè)面向集群計(jì)算的通用框架,可用于許多不同的應(yīng)用。使用者主要有兩種:數(shù)據(jù)科學(xué)家和數(shù)據(jù)工程師。我們仔細(xì)地分析一下這兩種人和他們使用Spark的方式。明顯地,典型的使用案例是不同的,但我們可以將他們粗略地分為兩類,數(shù)據(jù)科學(xué)和數(shù)據(jù)應(yīng)用。
數(shù)據(jù)科學(xué)的任務(wù)數(shù)據(jù)科學(xué),近幾年出現(xiàn)的一門學(xué)科,專注于分析數(shù)據(jù)。盡管沒有一個(gè)標(biāo)準(zhǔn)的定義,我們認(rèn)為一個(gè)數(shù)據(jù)科學(xué)家的主要工作是分析和建模數(shù)據(jù)。數(shù)據(jù)科學(xué)家可能會(huì)SQL,統(tǒng)計(jì)學(xué),預(yù)測(cè)模型(機(jī)器學(xué)習(xí)),用Python、MATLAB或R編程。數(shù)據(jù)科學(xué)家能將數(shù)據(jù)格式化,用于進(jìn)一步的分析。
數(shù)據(jù)科學(xué)家為了回答一個(gè)問題或進(jìn)行深入研究,會(huì)使用相關(guān)的技術(shù)分析數(shù)據(jù)。通常,他們的工作包含特殊的分析,所以他們使用交互式shell,以使得他們能在最短的時(shí)間內(nèi)看到查詢結(jié)果和代碼片段。Spark的速度和簡(jiǎn)單的API接口很好地符合這個(gè)目標(biāo),它的內(nèi)建庫(kù)意味著很多算法可以隨時(shí)使用。
Spark通過(guò)若干組件支持不同的數(shù)據(jù)科學(xué)任務(wù)。Spark shell使得用Python或Scala進(jìn)行交互式數(shù)據(jù)分析變得簡(jiǎn)單。Spark SQL也有一個(gè)獨(dú)立的SQL shell,可以用SQL進(jìn)行數(shù)據(jù)分析,也可以在Spark程序中或Spark shell中使用Spark SQL。MLlib庫(kù)支持機(jī)器學(xué)習(xí)和數(shù)據(jù)分析。而且,支持調(diào)用外部的MATLAB或R語(yǔ)言編寫的程序。Spark使得數(shù)據(jù)科學(xué)家可以用R或Pandas等工具處理包含大量數(shù)據(jù)的問題。
有時(shí),經(jīng)過(guò)初始的數(shù)據(jù)處理階段后,數(shù)據(jù)科學(xué)家的工作將被產(chǎn)品化,擴(kuò)展,加固(容錯(cuò)性),進(jìn)而成為一個(gè)生產(chǎn)數(shù)據(jù)處理應(yīng)用,作為商業(yè)應(yīng)用的一個(gè)組件。例如,一個(gè)數(shù)據(jù)科學(xué)家的研究成果可能會(huì)產(chǎn)生一個(gè)產(chǎn)品推薦系統(tǒng),集成到一個(gè)web應(yīng)用上,用來(lái)向用戶生成產(chǎn)品建議。通常由另外的人員(如工程師)對(duì)數(shù)據(jù)科學(xué)家的工作進(jìn)行產(chǎn)品化。
數(shù)據(jù)處理應(yīng)用Spark的另外一個(gè)主要的使用可以從工程師的角度進(jìn)行描述。在這里,工程師指使用Spark來(lái)構(gòu)建生產(chǎn)數(shù)據(jù)處理應(yīng)用的大量的軟件開發(fā)者。這些開發(fā)者了解軟件工程的概念和原則,如封裝、接口設(shè)計(jì)和面向?qū)ο缶幊獭K麄兺ǔS杏?jì)算機(jī)學(xué)科的學(xué)位。他們通過(guò)自己的軟件工程技能來(lái)設(shè)計(jì)和構(gòu)建實(shí)現(xiàn)某個(gè)商業(yè)使用場(chǎng)景的軟件系統(tǒng)。
對(duì)工程師而言,Spark提供了一個(gè)簡(jiǎn)單的方式在集群之間并行化這些應(yīng)用,隱藏了分布式系統(tǒng)、網(wǎng)絡(luò)通信和容錯(cuò)處理的復(fù)雜性。系統(tǒng)使得工程師在實(shí)現(xiàn)任務(wù)的同時(shí),有充足的權(quán)限監(jiān)控、檢查和調(diào)整應(yīng)用。API的模塊特性使得重用已有工作和本地測(cè)試變得簡(jiǎn)單。
Spark用戶使用Spark作為其數(shù)據(jù)處理應(yīng)用,因?yàn)樗峁┝素S富的功能,易于學(xué)習(xí)和使用,而且成熟可靠。
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無(wú)論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫(kù)管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫(kù)表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫(kù)表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫(kù))處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場(chǎng)景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對(duì)象的 text 與 content:區(qū)別、場(chǎng)景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請(qǐng)求開發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫(kù)表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請(qǐng)求工具對(duì)比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請(qǐng)求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營(yíng)問題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過(guò)程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營(yíng)銷案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營(yíng)銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價(jià)值 在數(shù)據(jù)驅(qū)動(dòng)決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實(shí)踐到業(yè)務(wù)價(jià)值挖掘 在數(shù)據(jù)分析場(chǎng)景中,聚類分析作為 “無(wú)監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價(jià)值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡(jiǎn)單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10