
ID3 《= 最大信息熵增益,只能處理離散型數(shù)據(jù)
C4.5 《= 信息增益率,可處理連續(xù)性和離散型數(shù)據(jù),相比ID3,減少了因變量過多導(dǎo)致的過擬合
C5.0 《= 信息增益率,運算性能比C4.5更強大
CART 《= 基尼指數(shù)最小原則,連續(xù)性和離散型數(shù)據(jù)均可
信息熵體現(xiàn)的是數(shù)據(jù)的雜亂程度,信息越雜亂,信息熵越大,反之越小。 例如:擁有四種連續(xù)型變量的特征變量的信息熵一定比擁有三種的要大。
特征變量的N種可能性,每種可能性的概率相同,N越大,信息熵越大。
每種可能性的概率不同,越偏態(tài),信息熵越小。
所有特征變量中,信息增益率的,就是根節(jié)點(root leaf),根節(jié)點一般是選擇N越大的特征變量,因為N越大,信息熵越大。
信息增益率是在信息熵的基礎(chǔ)上作懲罰計算,避免特征變量可能性多導(dǎo)致的高信息增益。
代碼相關(guān)
library(C50)
C5.0(x,y, trials = 1, rules=FALSE,weights=NULL,control=C5.0Control(),costs=NULL)
x為特征變量,y為應(yīng)變量
trials 為迭代次數(shù)(這個值根據(jù)不同數(shù)據(jù)而不同,并非越大越好,一般介于5-15之間,可以用遍歷來尋找最高準(zhǔn)確率的模型,對模型準(zhǔn)確率的提升效果中等)
cost 為損失矩陣,R中應(yīng)該傳入一個矩陣(據(jù)說是對準(zhǔn)確率矩陣約束猜測錯誤的項,但是并沒特別明顯的規(guī)律,可以使用遍歷來尋找最好的cost,準(zhǔn)確率提升效果?。?
costs <- matrix(c(1,2,1,2),
ncol = 2, byrow = TRUE,
dimnames = list(c("yes","no"), c("yes","no")))
control 設(shè)置C5.0模型的其他參數(shù),比如置信水平和節(jié)點最小樣本等(水很深,參數(shù)很多,可以自行查閱R的幫助文檔,我只設(shè)置了一個CF,準(zhǔn)確率提升效果?。?
control = C5.0Control(CF = 0.25)
library(C50)
#對iris隨機劃分訓(xùn)練集和測試集
set.seed(1234)
index <- sample(1:nrow(iris), size = 0.75*nrow(iris))
train <- iris[index,]
test <- iris[-index,]
#查看訓(xùn)練集和測試集分布是否合理
prop.table(table(train$Species))
prop.table(table(test$Species))
#不設(shè)置任何參數(shù)
fit1 <- C5.0(x = train[,1:4], y = train[,5])
pred1 <- predict(fit1, newdata = test[,-5])
freq1 <- table(pred1, test[,5])
accuracy <- sum(diag(freq1))/sum(freq1)
pred1 setosa versicolor virginica
setosa 16 0 0
versicolor 0 13 1
virginica 0 0 8
準(zhǔn)確率為0.9736842,只有一個錯誤。。。顯然150個iris太少了,優(yōu)化都省了。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學(xué)領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學(xué)計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學(xué)計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務(wù)價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導(dǎo)向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10