
Python使用遺傳算法解決最大流問題
本文為大家分享了Python遺傳算法解決最大流問題,供大家參考,具體內容如下
Generate_matrix
def Generate_matrix(x,y):
import numpy as np
import random
return np.ceil(np.array([random.random()*10 for i in range(x*y)]).reshape(x,y))
Max_road
def Max_road(A,degree,start):
import random
import numpy as np
import copy
def change(M,number,start): # number 控制變異程度 start 控制變異量
x , y = M.shape
for i in range(start,x):
Line = zip(range(len(M[i])),M[i])
index_0 = [t[0] for t in Line if t[1]==0] # 獲取 0 所對應的下標
index_1 = [t[0] for t in Line if t[1]==1] # 獲取 1 所對應的下標
M[i][random.sample(index_0,number)[0]]=1 # 隨機改變序列中 number 個值 0->1
M[i][random.sample(index_1,number)[0]]=0 # 隨機改變序列中 number 個值 1->0
return M
x,y = A.shape
n=x
generation = y
#初始化一個有 n 中情況的解決方案矩陣
init_solve = np.zeros([n,x+y-2])
init=[1]*(x-1)+[0]*(y-1)
for i in range(n) :
random.shuffle(init)
init_solve[i,:] = init # 1 表示向下走 0 表示向右走
solve = copy.copy(init_solve)
for loop in range(generation):
Sum = [A[0,0]]*n # 用于記錄每一種方案的總流量
for i in range(n):
j=0;k=0;
for m in solve[i,:]:
if m==1:
k=k+1
else:
j=j+1
Sum[i] = Sum[i] + A[k,j]
Sum_index = zip(range(len(Sum)),Sum)
sort_sum_index = sorted(Sum_index,key = lambda d : d[1] , reverse =True) # 將 方案 按照流量總和排序
Max = sort_sum_index[0][1] # 最大流量
#print Max
solve_index_half = [a[0] for a in sort_sum_index[:n/2]] # 保留排序后方案的一半
solve = np.concatenate([solve[solve_index_half],solve[solve_index_half]]) # 將保留的一半方案 進行復制 ,復制部分用于變異
change(solve,int((x+y-2)*degree)+1 ,start) # 變異
return solve[0] , Max
Draw_road
def Draw_road(road,A):
import pylab as plt
import seaborn
seaborn.set()
x , y =A.shape
# 將下移和右移映射到繪圖坐標上
Road = [(1,x)] # 初始坐標
j=1;k=x;
for m in road:
if m==1:
k=k-1
else:
j=j+1
Road.append((j,k))
# print Road
for i in range(len(road)):
plt.plot([Road[i][0],Road[i+1][0]],[Road[i][1],Road[i+1][1]])
實際運行的例子
In [119]: A = Generate_matrix(4,6)
In [120]: A
Out[120]:
array([[ 10., 1., 7., 10., 8., 8.],
[ 4., 8., 8., 4., 8., 2.],
[ 9., 8., 8., 3., 9., 8.],
[ 7., 2., 5., 9., 3., 8.]])
In [121]: road , M=Max_road(A,0.1,2)
In [122]: Draw_road(road,A)
較大規(guī)模的情況
以上就是本文的全部內容,希望對大家的學習有所幫助
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉換:從基礎用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關聯(lián)查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結構數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結構數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預期算子的內涵、作用與應用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結構數(shù)據(jù)特征價值的專業(yè)核心 表結構數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結構化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應用 在數(shù)據(jù)分析與統(tǒng)計學領域,假設檢驗是驗證研究假設、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結構數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結構數(shù)據(jù)(以 “行 - 列” 存儲的結構化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網絡請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結構數(shù)據(jù)價值的核心操盤手 表格結構數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務邏輯:從規(guī)則拆解到數(shù)據(jù)把關的實戰(zhàn)指南 在業(yè)務系統(tǒng)落地過程中,“業(yè)務邏輯” 是連接 “需求設計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到決策支撐的價值導向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10