
Python矩陣常見運(yùn)算操作實(shí)例總結(jié)
本文實(shí)例講述了Python矩陣常見運(yùn)算操作。分享給大家供大家參考,具體如下:
python的numpy庫(kù)提供矩陣運(yùn)算的功能,因此我們?cè)谛枰仃囘\(yùn)算的時(shí)候,需要導(dǎo)入numpy的包。
一.numpy的導(dǎo)入和使用
from numpy import *;#導(dǎo)入numpy的庫(kù)函數(shù)
import numpy as np; #這個(gè)方式使用numpy的函數(shù)時(shí),需要以np.開頭。
二.矩陣的創(chuàng)建
由一維或二維數(shù)據(jù)創(chuàng)建矩陣
from numpy import *;
a1=array([1,2,3]);
a1=mat(a1);
創(chuàng)建常見的矩陣
data1=mat(zeros((3,3)));
#創(chuàng)建一個(gè)3*3的零矩陣,矩陣這里zeros函數(shù)的參數(shù)是一個(gè)tuple類型(3,3)
data2=mat(ones((2,4)));
#創(chuàng)建一個(gè)2*4的1矩陣,默認(rèn)是浮點(diǎn)型的數(shù)據(jù),如果需要時(shí)int類型,可以使用dtype=int
data3=mat(random.rand(2,2));
#這里的random模塊使用的是numpy中的random模塊,random.rand(2,2)創(chuàng)建的是一個(gè)二維數(shù)組,需要將其轉(zhuǎn)換成#matrix
data4=mat(random.randint(10,size=(3,3)));
#生成一個(gè)3*3的0-10之間的隨機(jī)整數(shù)矩陣,如果需要指定下界則可以多加一個(gè)參數(shù)
data5=mat(random.randint(2,8,size=(2,5));
#產(chǎn)生一個(gè)2-8之間的隨機(jī)整數(shù)矩陣
data6=mat(eye(2,2,dtype=int));
#產(chǎn)生一個(gè)2*2的對(duì)角矩陣
a1=[1,2,3];
a2=mat(diag(a1));
#生成一個(gè)對(duì)角線為1、2、3的對(duì)角矩陣
三.常見的矩陣運(yùn)算
1. 矩陣相乘
a1=mat([1,2]);
a2=mat([[1],[2]]);
a3=a1*a2;
#1*2的矩陣乘以2*1的矩陣,得到1*1的矩陣
2. 矩陣點(diǎn)乘
矩陣對(duì)應(yīng)元素相乘
a1=mat([1,1]);
a2=mat([2,2]);
a3=multiply(a1,a2);
矩陣點(diǎn)乘
a1=mat([2,2]);
a2=a1*2;
3.矩陣求逆,轉(zhuǎn)置
矩陣求逆
a1=mat(eye(2,2)*0.5);
a2=a1.I;
#求矩陣matrix([[0.5,0],[0,0.5]])的逆矩陣
矩陣轉(zhuǎn)置
a1=mat([[1,1],[0,0]]);
a2=a1.T;
4.計(jì)算矩陣對(duì)應(yīng)行列的最大、最小值、和。
a1=mat([[1,1],[2,3],[4,2]]);
計(jì)算每一列、行的和
a2=a1.sum(axis=0);//列和,這里得到的是1*2的矩陣
a3=a1.sum(axis=1);//行和,這里得到的是3*1的矩陣
a4=sum(a1[1,:]);//計(jì)算第一行所有列的和,這里得到的是一個(gè)數(shù)值
計(jì)算最大、最小值和索引
a1.max();//計(jì)算a1矩陣中所有元素的最大值,這里得到的結(jié)果是一個(gè)數(shù)值
a2=max(a1[:,1]);//計(jì)算第二列的最大值,這里得到的是一個(gè)1*1的矩陣
a1[1,:].max();//計(jì)算第二行的最大值,這里得到的是一個(gè)一個(gè)數(shù)值
np.max(a1,0);//計(jì)算所有列的最大值,這里使用的是numpy中的max函數(shù)
np.max(a1,1);//計(jì)算所有行的最大值,這里得到是一個(gè)矩陣
np.argmax(a1,0);//計(jì)算所有列的最大值對(duì)應(yīng)在該列中的索引
np.argmax(a1[1,:]);//計(jì)算第二行中最大值對(duì)應(yīng)在改行的索引
5.矩陣的分隔和合并
矩陣的分隔,同列表和數(shù)組的分隔一致。
a=mat(ones((3,3)));
b=a[1:,1:];//分割出第二行以后的行和第二列以后的列的所有元素
矩陣的合并
a=mat(ones((2,2)));
b=mat(eye(2));
c=vstack((a,b));//按列合并,即增加行數(shù)
d=hstack((a,b));//按行合并,即行數(shù)不變,擴(kuò)展列數(shù)
四.矩陣、列表、數(shù)組的轉(zhuǎn)換
列表可以修改,并且列表中元素可以使不同類型的數(shù)據(jù),如下:
l1=[[1],'hello',3];
numpy中數(shù)組,同一個(gè)數(shù)組中所有元素必須為同一個(gè)類型,有幾個(gè)常見的屬性:
a=array([[2],[1]]);
dimension=a.ndim;
m,n=a.shape;
number=a.size;//元素總個(gè)數(shù)
str=a.dtype;//元素的類型
numpy中的矩陣也有與數(shù)組常見的幾個(gè)屬性。
它們之間的轉(zhuǎn)換:
a1=[[1,2],[3,2],[5,2]];//列表
a2=array(a1);//將列表轉(zhuǎn)換成二維數(shù)組
a3=array(a1);//將列表轉(zhuǎn)化成矩陣
a4=array(a3);//將矩陣轉(zhuǎn)換成數(shù)組
a5=a3.tolist();//將矩陣轉(zhuǎn)換成列表
a6=a2.tolist();//將數(shù)組轉(zhuǎn)換成列表
這里可以發(fā)現(xiàn)三者之間的轉(zhuǎn)換是非常簡(jiǎn)單的,這里需要注意的是,當(dāng)列表是一維的時(shí)候,將它轉(zhuǎn)換成數(shù)組和矩陣后,再通過(guò)tolist()轉(zhuǎn)換成列表是不相同的,需要做一些小小的修改。如下:
a1=[1,2,3];
a2=array(a1);
a3=mat(a1);
a4=a2.tolist();//這里得到的是[1,2,3]
a5=a3.tolist();//這里得到的是[[1,2,3]]
a6=(a4 == a5);//a6=False
a7=(a4 is a5[0]);//a7=True,a5[0]=[1,2,3]
矩陣轉(zhuǎn)換成數(shù)值,存在以下一種情況:
dataMat=mat([1]);
val=dataMat[0,0];//這個(gè)時(shí)候獲取的就是矩陣的元素的數(shù)值,而不再是矩陣的類型
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
LSTM 模型輸入長(zhǎng)度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長(zhǎng)序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報(bào)考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代浪潮下,CDA 數(shù)據(jù)分析師認(rèn)證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計(jì)的實(shí)用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強(qiáng)大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠(chéng)摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實(shí)施重大更新。 此次更新旨在確保認(rèn) ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價(jià)值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡(jiǎn)稱 BI)深度融合的時(shí)代,BI ...
2025-07-10SQL 在預(yù)測(cè)分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢(shì)預(yù)判? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代,預(yù)測(cè)分析作為挖掘數(shù)據(jù)潛在價(jià)值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價(jià)值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點(diǎn),而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報(bào)考到取證的全攻略? 在數(shù)字經(jīng)濟(jì)蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭(zhēng)搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢(shì)性檢驗(yàn):捕捉數(shù)據(jù)背后的時(shí)間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢(shì)性檢驗(yàn)如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時(shí)間維度的精準(zhǔn)切片? ? 在數(shù)據(jù)的世界里,時(shí)間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準(zhǔn) ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實(shí)戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認(rèn)證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗(yàn):數(shù)據(jù)趨勢(shì)與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準(zhǔn)確捕捉數(shù)據(jù)的趨勢(shì)變化以及識(shí)別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認(rèn)證作為國(guó)內(nèi)權(quán)威的數(shù)據(jù)分析能力認(rèn)證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對(duì)策略? 長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨(dú)特的門控機(jī)制,在 ...
2025-07-07統(tǒng)計(jì)學(xué)方法在市場(chǎng)調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場(chǎng)調(diào)研是企業(yè)洞察市場(chǎng)動(dòng)態(tài)、了解消費(fèi)者需求的重要途徑,而統(tǒng)計(jì)學(xué)方法則是市場(chǎng)調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當(dāng)下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動(dòng)力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準(zhǔn)確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動(dòng)力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價(jià)值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03