99999久久久久久亚洲,欧美人与禽猛交狂配,高清日韩av在线影院,一个人在线高清免费观看,啦啦啦在线视频免费观看www

熱線電話:13121318867

登錄
首頁精彩閱讀Python使用三種方法實現(xiàn)PCA算法
Python使用三種方法實現(xiàn)PCA算法
2018-01-23
收藏

Python使用三種方法實現(xiàn)PCA算法

主成分分析,即Principal Component Analysis(PCA),是多元統(tǒng)計中的重要內(nèi)容,也廣泛應用于機器學習和其它領域。它的主要作用是對高維數(shù)據(jù)進行降維。PCA把原先的n個特征用數(shù)目更少的k個特征取代,新特征是舊特征的線性組合,這些線性組合最大化樣本方差,盡量使新的k個特征互不相關(guān)。

主成分分析(PCA) vs 多元判別式分析(MDA)

PCA和MDA都是線性變換的方法,二者關(guān)系密切。在PCA中,我們尋找數(shù)據(jù)集中最大化方差的成分,在MDA中,我們對類間最大散布的方向更感興趣。

一句話,通過PCA,我們將整個數(shù)據(jù)集(不帶類別標簽)映射到一個子空間中,在MDA中,我們致力于找到一個能夠最好區(qū)分各類的最佳子集。粗略來講,PCA是通過尋找方差最大的軸(在一類中,因為PCA把整個數(shù)據(jù)集當做一類),在MDA中,我們還需要最大化類間散布。

在通常的模式識別問題中,MDA往往在PCA后面。

PCA的主要算法如下:


  1. 組織數(shù)據(jù)形式,以便于模型使用;
  2. 計算樣本每個特征的平均值;
  3. 每個樣本數(shù)據(jù)減去該特征的平均值(歸一化處理);
  4. 求協(xié)方差矩陣;
  5. 找到協(xié)方差矩陣的特征值和特征向量;
  6. 特征值和特征向量重新排列(特征值從大到小排列);
  7. 特征值求取累計貢獻率;
  8. 對累計貢獻率按照某個特定比例,選取特征向量集的字跡合;
  9. 對原始數(shù)據(jù)(第三步后)。


其中協(xié)方差矩陣的分解可以通過按對稱矩陣的特征向量來,也可以通過分解矩陣的SVD來實現(xiàn),而在Scikit-learn中,也是采用SVD來實現(xiàn)PCA算法的。

本文將用三種方法來實現(xiàn)PCA算法,一種是原始算法,即上面所描述的算法過程,具體的計算方法和過程,可以參考:A tutorial on Principal Components Analysis, Lindsay I Smith. 一種是帶SVD的原始算法,在Python的Numpy模塊中已經(jīng)實現(xiàn)了SVD算法,并且將特征值從大從小排列,省去了對特征值和特征向量重新排列這一步。最后一種方法是用Python的Scikit-learn模塊實現(xiàn)的PCA類直接進行計算,來驗證前面兩種方法的正確性。

用以上三種方法來實現(xiàn)PCA的完整的Python如下:

import numpy as np
from sklearn.decomposition import PCA
import sys
#returns choosing how many main factors
def index_lst(lst, component=0, rate=0):
  #component: numbers of main factors
  #rate: rate of sum(main factors)/sum(all factors)
  #rate range suggest: (0.8,1)
  #if you choose rate parameter, return index = 0 or less than len(lst)
  if component and rate:
    print('Component and rate must choose only one!')
    sys.exit(0)
  if not component and not rate:
    print('Invalid parameter for numbers of components!')
    sys.exit(0)
  elif component:
    print('Choosing by component, components are %s......'%component)
    return component
  else:
    print('Choosing by rate, rate is %s ......'%rate)
    for i in range(1, len(lst)):
      if sum(lst[:i])/sum(lst) >= rate:
        return i
    return 0
 
def main():
  # test data
  mat = [[-1,-1,0,2,1],[2,0,0,-1,-1],[2,0,1,1,0]]
   
  # simple transform of test data
  Mat = np.array(mat, dtype='float64')
  print('Before PCA transforMation, data is:\n', Mat)
  print('\nMethod 1: PCA by original algorithm:')
  p,n = np.shape(Mat) # shape of Mat
  t = np.mean(Mat, 0) # mean of each column
   
  # substract the mean of each column
  for i in range(p):
    for j in range(n):
      Mat[i,j] = float(Mat[i,j]-t[j])
       
  # covariance Matrix
  cov_Mat = np.dot(Mat.T, Mat)/(p-1)
   
  # PCA by original algorithm
  # eigvalues and eigenvectors of covariance Matrix with eigvalues descending
  U,V = np.linalg.eigh(cov_Mat)
  # Rearrange the eigenvectors and eigenvalues
  U = U[::-1]
  for i in range(n):
    V[i,:] = V[i,:][::-1]
  # choose eigenvalue by component or rate, not both of them euqal to 0
  Index = index_lst(U, component=2) # choose how many main factors
  if Index:
    v = V[:,:Index] # subset of Unitary matrix
  else: # improper rate choice may return Index=0
    print('Invalid rate choice.\nPlease adjust the rate.')
    print('Rate distribute follows:')
    print([sum(U[:i])/sum(U) for i in range(1, len(U)+1)])
    sys.exit(0)
  # data transformation
  T1 = np.dot(Mat, v)
  # print the transformed data
  print('We choose %d main factors.'%Index)
  print('After PCA transformation, data becomes:\n',T1)
   
  # PCA by original algorithm using SVD
  print('\nMethod 2: PCA by original algorithm using SVD:')
  # u: Unitary matrix, eigenvectors in columns
  # d: list of the singular values, sorted in descending order
  u,d,v = np.linalg.svd(cov_Mat)
  Index = index_lst(d, rate=0.95) # choose how many main factors
  T2 = np.dot(Mat, u[:,:Index]) # transformed data
  print('We choose %d main factors.'%Index)
  print('After PCA transformation, data becomes:\n',T2)
   
  # PCA by Scikit-learn
  pca = PCA(n_components=2) # n_components can be integer or float in (0,1)
  pca.fit(mat) # fit the model
  print('\nMethod 3: PCA by Scikit-learn:')
  print('After PCA transformation, data becomes:')
  print(pca.fit_transform(mat)) # transformed data      
main()

運行以上代碼,輸出結(jié)果為:

這說明用以上三種方法來實現(xiàn)PCA都是可行的。這樣我們就能理解PCA的具體實現(xiàn)過程啦~~有興趣的讀者可以用其它語言實現(xiàn)一下哈

數(shù)據(jù)分析咨詢請掃描二維碼

若不方便掃碼,搜微信號:CDAshujufenxi

數(shù)據(jù)分析師資訊
更多

OK
客服在線
立即咨詢
客服在線
立即咨詢
') } function initGt() { var handler = function (captchaObj) { captchaObj.appendTo('#captcha'); captchaObj.onReady(function () { $("#wait").hide(); }).onSuccess(function(){ $('.getcheckcode').removeClass('dis'); $('.getcheckcode').trigger('click'); }); window.captchaObj = captchaObj; }; $('#captcha').show(); $.ajax({ url: "/login/gtstart?t=" + (new Date()).getTime(), // 加隨機數(shù)防止緩存 type: "get", dataType: "json", success: function (data) { $('#text').hide(); $('#wait').show(); // 調(diào)用 initGeetest 進行初始化 // 參數(shù)1:配置參數(shù) // 參數(shù)2:回調(diào),回調(diào)的第一個參數(shù)驗證碼對象,之后可以使用它調(diào)用相應的接口 initGeetest({ // 以下 4 個配置參數(shù)為必須,不能缺少 gt: data.gt, challenge: data.challenge, offline: !data.success, // 表示用戶后臺檢測極驗服務器是否宕機 new_captcha: data.new_captcha, // 用于宕機時表示是新驗證碼的宕機 product: "float", // 產(chǎn)品形式,包括:float,popup width: "280px", https: true // 更多配置參數(shù)說明請參見:http://docs.geetest.com/install/client/web-front/ }, handler); } }); } function codeCutdown() { if(_wait == 0){ //倒計時完成 $(".getcheckcode").removeClass('dis').html("重新獲取"); }else{ $(".getcheckcode").addClass('dis').html("重新獲取("+_wait+"s)"); _wait--; setTimeout(function () { codeCutdown(); },1000); } } function inputValidate(ele,telInput) { var oInput = ele; var inputVal = oInput.val(); var oType = ele.attr('data-type'); var oEtag = $('#etag').val(); var oErr = oInput.closest('.form_box').next('.err_txt'); var empTxt = '請輸入'+oInput.attr('placeholder')+'!'; var errTxt = '請輸入正確的'+oInput.attr('placeholder')+'!'; var pattern; if(inputVal==""){ if(!telInput){ errFun(oErr,empTxt); } return false; }else { switch (oType){ case 'login_mobile': pattern = /^1[3456789]\d{9}$/; if(inputVal.length==11) { $.ajax({ url: '/login/checkmobile', type: "post", dataType: "json", data: { mobile: inputVal, etag: oEtag, page_ur: window.location.href, page_referer: document.referrer }, success: function (data) { } }); } break; case 'login_yzm': pattern = /^\d{6}$/; break; } if(oType=='login_mobile'){ } if(!!validateFun(pattern,inputVal)){ errFun(oErr,'') if(telInput){ $('.getcheckcode').removeClass('dis'); } }else { if(!telInput) { errFun(oErr, errTxt); }else { $('.getcheckcode').addClass('dis'); } return false; } } return true; } function errFun(obj,msg) { obj.html(msg); if(msg==''){ $('.login_submit').removeClass('dis'); }else { $('.login_submit').addClass('dis'); } } function validateFun(pat,val) { return pat.test(val); }