
Python使用matplotlib繪制動(dòng)畫的方法
本文實(shí)例講述了Python使用matplotlib繪制動(dòng)畫的方法。分享給大家供大家參考。具體分析如下:
matplotlib從1.1.0版本以后就開始支持繪制動(dòng)畫
下面是幾個(gè)的示例:
第一個(gè)例子使用generator,每隔兩秒,就運(yùn)行函數(shù)data_gen:
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
fig = plt.figure()
axes1 = fig.add_subplot(111)
line, = axes1.plot(np.random.rand(10))
#因?yàn)閡pdate的參數(shù)是調(diào)用函數(shù)data_gen,
#所以第一個(gè)默認(rèn)參數(shù)不能是framenum
def update(data):
line.set_ydata(data)
return line,
# 每次生成10個(gè)隨機(jī)數(shù)據(jù)
def data_gen():
while True:
yield np.random.rand(10)
ani = animation.FuncAnimation(fig, update, data_gen, interval=2*1000)
plt.show()
第二個(gè)例子使用list(metric),每次從metric中取一行數(shù)據(jù)作為參數(shù)送入update中:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
start = [1, 0.18, 0.63, 0.29, 0.03, 0.24, 0.86, 0.07, 0.58, 0]
metric =[[0.03, 0.86, 0.65, 0.34, 0.34, 0.02, 0.22, 0.74, 0.66, 0.65],
[0.43, 0.18, 0.63, 0.29, 0.03, 0.24, 0.86, 0.07, 0.58, 0.55],
[0.66, 0.75, 0.01, 0.94, 0.72, 0.77, 0.20, 0.66, 0.81, 0.52]
]
fig = plt.figure()
window = fig.add_subplot(111)
line, = window.plot(start)
#如果是參數(shù)是list,則默認(rèn)每次取list中的一個(gè)元素,
#即metric[0],metric[1],...
def update(data):
line.set_ydata(data)
return line,
ani = animation.FuncAnimation(fig, update, metric, interval=2*1000)
plt.show()
第三個(gè)例子:
import numpy as np
from matplotlib import pyplot as plt
from matplotlib import animation
# First set up the figure, the axis, and the plot element we want to animate
fig = plt.figure()
ax = plt.axes(xlim=(0, 2), ylim=(-2, 2))
line, = ax.plot([], [], lw=2)
# initialization function: plot the background of each frame
def init():
line.set_data([], [])
return line,
# animation function. This is called sequentially
# note: i is framenumber
def animate(i):
x = np.linspace(0, 2, 1000)
y = np.sin(2 * np.pi * (x - 0.01 * i))
line.set_data(x, y)
return line,
# call the animator. blit=True means only re-draw the parts that have changed.
anim = animation.FuncAnimation(fig, animate, init_func=init,
frames=200, interval=20, blit=True)
#anim.save('basic_animation.mp4', fps=30, extra_args=['-vcodec', 'libx264'])
plt.show()
第四個(gè)例子:
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
# 每次產(chǎn)生一個(gè)新的坐標(biāo)點(diǎn)
def data_gen():
t = data_gen.t
cnt = 0
while cnt < 1000:
cnt+=1
t += 0.05
yield t, np.sin(2*np.pi*t) * np.exp(-t/10.)
data_gen.t = 0
# 繪圖
fig, ax = plt.subplots()
line, = ax.plot([], [], lw=2)
ax.set_ylim(-1.1, 1.1)
ax.set_xlim(0, 5)
ax.grid()
xdata, ydata = [], []
# 因?yàn)閞un的參數(shù)是調(diào)用函數(shù)data_gen,
# 所以第一個(gè)參數(shù)可以不是framenum:設(shè)置line的數(shù)據(jù),返回line
def run(data):
# update the data
t,y = data
xdata.append(t)
ydata.append(y)
xmin, xmax = ax.get_xlim()
if t >= xmax:
ax.set_xlim(xmin, 2*xmax)
ax.figure.canvas.draw()
line.set_data(xdata, ydata)
return line,
# 每隔10秒調(diào)用函數(shù)run,run的參數(shù)為函數(shù)data_gen,
# 表示圖形只更新需要繪制的元素
ani = animation.FuncAnimation(fig, run, data_gen, blit=True, interval=10,
repeat=False)
plt.show()
再看下面的例子:
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
#第一個(gè)參數(shù)必須為framenum
def update_line(num, data, line):
line.set_data(data[...,:num])
return line,
fig1 = plt.figure()
data = np.random.rand(2, 15)
l, = plt.plot([], [], 'r-')
plt.xlim(0, 1)
plt.ylim(0, 1)
plt.xlabel('x')
plt.title('test')
#framenum從1增加大25后,返回再次從1增加到25,再返回...
line_ani = animation.FuncAnimation(fig1, update_line, 25,fargs=(data, l),interval=50, blit=True)
#等同于
#line_ani = animation.FuncAnimation(fig1, update_line, frames=25,fargs=(data, l),
# interval=50, blit=True)
#忽略frames參數(shù),framenum會(huì)從1一直增加下去知道無窮
#由于frame達(dá)到25以后,數(shù)據(jù)不再改變,所以你會(huì)發(fā)現(xiàn)到達(dá)25以后圖形不再變化了
#line_ani = animation.FuncAnimation(fig1, update_line, fargs=(data, l),
# interval=50, blit=True)
plt.show()
希望本文所述對(duì)大家的python程序設(shè)計(jì)有所幫助。
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
LSTM 模型輸入長度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報(bào)考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代浪潮下,CDA 數(shù)據(jù)分析師認(rèn)證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計(jì)的實(shí)用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強(qiáng)大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實(shí)施重大更新。 此次更新旨在確保認(rèn) ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價(jià)值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡(jiǎn)稱 BI)深度融合的時(shí)代,BI ...
2025-07-10SQL 在預(yù)測(cè)分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢(shì)預(yù)判? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代,預(yù)測(cè)分析作為挖掘數(shù)據(jù)潛在價(jià)值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價(jià)值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點(diǎn),而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報(bào)考到取證的全攻略? 在數(shù)字經(jīng)濟(jì)蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭(zhēng)搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢(shì)性檢驗(yàn):捕捉數(shù)據(jù)背后的時(shí)間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢(shì)性檢驗(yàn)如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時(shí)間維度的精準(zhǔn)切片? ? 在數(shù)據(jù)的世界里,時(shí)間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準(zhǔn) ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實(shí)戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認(rèn)證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗(yàn):數(shù)據(jù)趨勢(shì)與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準(zhǔn)確捕捉數(shù)據(jù)的趨勢(shì)變化以及識(shí)別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認(rèn)證作為國內(nèi)權(quán)威的數(shù)據(jù)分析能力認(rèn)證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對(duì)策略? 長短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨(dú)特的門控機(jī)制,在 ...
2025-07-07統(tǒng)計(jì)學(xué)方法在市場(chǎng)調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場(chǎng)調(diào)研是企業(yè)洞察市場(chǎng)動(dòng)態(tài)、了解消費(fèi)者需求的重要途徑,而統(tǒng)計(jì)學(xué)方法則是市場(chǎng)調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當(dāng)下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動(dòng)力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準(zhǔn)確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動(dòng)力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價(jià)值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03