99999久久久久久亚洲,欧美人与禽猛交狂配,高清日韩av在线影院,一个人在线高清免费观看,啦啦啦在线视频免费观看www

熱線電話:13121318867

登錄
首頁精彩閱讀淺談利用邏輯回歸來解決文本分類時的模型調(diào)優(yōu)
淺談利用邏輯回歸來解決文本分類時的模型調(diào)優(yōu)
2018-01-18
收藏

淺談利用邏輯回歸來解決文本分類時的模型調(diào)優(yōu)

想和數(shù)據(jù)挖掘沾點邊,所以最近在復習一些算法,因為又學了點R,深感這是個統(tǒng)計分析挖掘的利器,所以想用R實現(xiàn)一些挖掘算法。

樸素貝葉斯法大概是最簡單的一種挖掘算法了,《統(tǒng)計學習方法》在第四章做了很詳細的敘述,無非是對于輸入特征x,利用通過學習得到的模型計算后驗概率分布,將后驗概率最大的分類作為輸出。

根據(jù)貝葉斯定理,后驗概率P(Y=cx | X=x) = 條件概率P(X=x | Y=cx) * 先驗概率P(Y = ck) / P(X=x),取P(X=x | Y=cx) * P(Y = ck)最大的分類作為輸出。
下面是一個小數(shù)據(jù)集下使用R進行樸素貝葉斯分類的例子,代碼如下:
    #構造訓練集  
    data <- matrix(c("sunny","hot","high","weak","no",  
                     "sunny","hot","high","strong","no",  
                     "overcast","hot","high","weak","yes",  
                     "rain","mild","high","weak","yes",  
                     "rain","cool","normal","weak","yes",  
                     "rain","cool","normal","strong","no",  
                     "overcast","cool","normal","strong","yes",  
                     "sunny","mild","high","weak","no",  
                     "sunny","cool","normal","weak","yes",  
                     "rain","mild","normal","weak","yes",  
                     "sunny","mild","normal","strong","yes",  
                     "overcast","mild","high","strong","yes",  
                     "overcast","hot","normal","weak","yes",  
                     "rain","mild","high","strong","no"), byrow = TRUE,  
                   dimnames = list(day = c(),  
                   condition = c("outlook","temperature",  
                     "humidity","wind","playtennis")), nrow=14, ncol=5);  
      
    #計算先驗概率  
    prior.yes = sum(data[,5] == "yes") / length(data[,5]);  
    prior.no  = sum(data[,5] == "no")  / length(data[,5]);  
      
    #模型  
    naive.bayes.prediction <- function(condition.vec) {  
        # Calculate unnormlized posterior probability for playtennis = yes.  
        playtennis.yes <-  
            sum((data[,1] == condition.vec[1]) & (data[,5] == "yes")) / sum(data[,5] == "yes") * # P(outlook = f_1 | playtennis = yes)  
            sum((data[,2] == condition.vec[2]) & (data[,5] == "yes")) / sum(data[,5] == "yes") * # P(temperature = f_2 | playtennis = yes)  
            sum((data[,3] == condition.vec[3]) & (data[,5] == "yes")) / sum(data[,5] == "yes") * # P(humidity = f_3 | playtennis = yes)  
            sum((data[,4] == condition.vec[4]) & (data[,5] == "yes")) / sum(data[,5] == "yes") * # P(wind = f_4 | playtennis = yes)  
            prior.yes; # P(playtennis = yes)  
      
        # Calculate unnormlized posterior probability for playtennis = no.  
        playtennis.no <-  
            sum((data[,1] == condition.vec[1]) & (data[,5] == "no"))  / sum(data[,5] == "no")  * # P(outlook = f_1 | playtennis = no)  
            sum((data[,2] == condition.vec[2]) & (data[,5] == "no"))  / sum(data[,5] == "no")  * # P(temperature = f_2 | playtennis = no)  
            sum((data[,3] == condition.vec[3]) & (data[,5] == "no"))  / sum(data[,5] == "no")  * # P(humidity = f_3 | playtennis = no)  
            sum((data[,4] == condition.vec[4]) & (data[,5] == "no"))  / sum(data[,5] == "no")  * # P(wind = f_4 | playtennis = no)  
            prior.no; # P(playtennis = no)  
          
        return(list(post.pr.yes = playtennis.yes,  
                post.pr.no  = playtennis.no,  
                prediction  = ifelse(playtennis.yes >= playtennis.no, "yes", "no")));  
    }  
      
    #預測  
    naive.bayes.prediction(c("rain",     "hot",  "high",   "strong"));  
    naive.bayes.prediction(c("sunny",    "mild", "normal", "weak"));  
    naive.bayes.prediction(c("overcast", "mild", "normal", "weak")); 
最后一個分類預測結(jié)果如下:
$post.pr.yes
[1] 0.05643739

$post.pr.no
[1] 0

$prediction
[1] "yes"

數(shù)據(jù)分析咨詢請掃描二維碼

若不方便掃碼,搜微信號:CDAshujufenxi

數(shù)據(jù)分析師資訊
更多

OK
客服在線
立即咨詢
客服在線
立即咨詢
') } function initGt() { var handler = function (captchaObj) { captchaObj.appendTo('#captcha'); captchaObj.onReady(function () { $("#wait").hide(); }).onSuccess(function(){ $('.getcheckcode').removeClass('dis'); $('.getcheckcode').trigger('click'); }); window.captchaObj = captchaObj; }; $('#captcha').show(); $.ajax({ url: "/login/gtstart?t=" + (new Date()).getTime(), // 加隨機數(shù)防止緩存 type: "get", dataType: "json", success: function (data) { $('#text').hide(); $('#wait').show(); // 調(diào)用 initGeetest 進行初始化 // 參數(shù)1:配置參數(shù) // 參數(shù)2:回調(diào),回調(diào)的第一個參數(shù)驗證碼對象,之后可以使用它調(diào)用相應的接口 initGeetest({ // 以下 4 個配置參數(shù)為必須,不能缺少 gt: data.gt, challenge: data.challenge, offline: !data.success, // 表示用戶后臺檢測極驗服務器是否宕機 new_captcha: data.new_captcha, // 用于宕機時表示是新驗證碼的宕機 product: "float", // 產(chǎn)品形式,包括:float,popup width: "280px", https: true // 更多配置參數(shù)說明請參見:http://docs.geetest.com/install/client/web-front/ }, handler); } }); } function codeCutdown() { if(_wait == 0){ //倒計時完成 $(".getcheckcode").removeClass('dis').html("重新獲取"); }else{ $(".getcheckcode").addClass('dis').html("重新獲取("+_wait+"s)"); _wait--; setTimeout(function () { codeCutdown(); },1000); } } function inputValidate(ele,telInput) { var oInput = ele; var inputVal = oInput.val(); var oType = ele.attr('data-type'); var oEtag = $('#etag').val(); var oErr = oInput.closest('.form_box').next('.err_txt'); var empTxt = '請輸入'+oInput.attr('placeholder')+'!'; var errTxt = '請輸入正確的'+oInput.attr('placeholder')+'!'; var pattern; if(inputVal==""){ if(!telInput){ errFun(oErr,empTxt); } return false; }else { switch (oType){ case 'login_mobile': pattern = /^1[3456789]\d{9}$/; if(inputVal.length==11) { $.ajax({ url: '/login/checkmobile', type: "post", dataType: "json", data: { mobile: inputVal, etag: oEtag, page_ur: window.location.href, page_referer: document.referrer }, success: function (data) { } }); } break; case 'login_yzm': pattern = /^\d{6}$/; break; } if(oType=='login_mobile'){ } if(!!validateFun(pattern,inputVal)){ errFun(oErr,'') if(telInput){ $('.getcheckcode').removeClass('dis'); } }else { if(!telInput) { errFun(oErr, errTxt); }else { $('.getcheckcode').addClass('dis'); } return false; } } return true; } function errFun(obj,msg) { obj.html(msg); if(msg==''){ $('.login_submit').removeClass('dis'); }else { $('.login_submit').addClass('dis'); } } function validateFun(pat,val) { return pat.test(val); }