
數(shù)據(jù)挖掘核心算法之一--回歸
回歸,是一個廣義的概念,包含的基本概念是用一群變量預測另一個變量的方法,白話就是根據(jù)幾件事情的相關程度,用其中幾件來預測另一件事情發(fā)生的概率,最簡單的即線性二變量問題(即簡單線性),例如下午我老婆要買個包,我沒買,那結果就是我肯定沒有晚飯吃;復雜一點就是多變量(即多元線性,這里有一點要注意的,因為我最早以前犯過這個錯誤,就是認為預測變量越多越好,做模型的時候總希望選取幾十個指標來預測,但是要知道,一方面,每增加一個變量,就相當于在這個變量上增加了誤差,變相的擴大了整體誤差,尤其當自變量選擇不當?shù)臅r候,影響更大,另一個方面,當選擇的倆個自變量本身就是高度相關而不獨立的時候,倆個指標相當于對結果造成了雙倍的影響 ),還是上面那個例子,如果我丈母娘來了,那我老婆就有很大概率做飯;如果在加一個事件,如果我老丈人也來了,那我老婆肯定會做飯;為什么會有這些判斷,因為這些都是以前多次發(fā)生的,所以我可以根據(jù)這幾件事情來預測我老婆會不會做晚飯。
大數(shù)據(jù)時代的問題當然不能讓你用肉眼看出來,不然要海量計算有啥用,所以除了上面那倆種回歸,我們經(jīng)常用的還有多項式回歸,即模型的關系是n階多項式;邏輯回歸(類似方法包括決策樹),即結果是分類變量的預測;泊松回歸,即結果變量代表了頻數(shù);非線性回歸、時間序列回歸、自回歸等等,太多了,這里主要講幾種常用的,好解釋的(所有的模型我們都要注意一個問題,就是要好解釋,不管是參數(shù)選擇還是變量選擇還是結果,因為模型建好了最終用的是業(yè)務人員,看結果的是老板,你要給他們解釋,如果你說結果就是這樣,我也不知道問什么,那升職加薪基本無望了),例如你發(fā)現(xiàn)日照時間和某地葡萄銷量有正比關系,那你可能還要解釋為什么有正比關系,進一步統(tǒng)計發(fā)現(xiàn)日照時間和葡萄的含糖量是相關的,即日照時間長葡萄好吃,另外日照時間和產(chǎn)量有關,日照時間長,產(chǎn)量大,價格自然低,結果是又便宜又好吃的葡萄銷量肯定大。再舉一個例子,某石油產(chǎn)地的咖啡銷量增大,國際油價的就會下跌,這倆者有關系,你除了要告訴領導這倆者有關系,你還要去尋找為什么有關系,咖啡是提升工人精力的主要飲料,咖啡銷量變大,跟蹤發(fā)現(xiàn)工人的工作強度變大,石油運輸出口增多,油價下跌和咖啡銷量的關系就出來了(單純的例子,不要多想,參考了一個根據(jù)遙感信息獲取船舶信息來預測糧食價格的真實案例,感覺不夠典型,就換一個,實際油價是人為操控地)。
回歸利器--最小二乘法,牛逼數(shù)學家高斯用的(另一個法國數(shù)學家說自己先創(chuàng)立的,不過沒辦法,誰讓高斯出名呢),這個方法主要就是根據(jù)樣本數(shù)據(jù),找到樣本和預測的關系,使得預測和真實值之間的誤差和最小;和我上面舉的老婆做晚飯的例子類似,不過我那個例子在不確定的方面只說了大概率,但是到底多大概率,就是用最小二乘法把這個關系式寫出來的,這里不講最小二乘法和公式了,使用工具就可以了,基本所有的數(shù)據(jù)分析工具都提供了這個方法的函數(shù),主要給大家講一下之前的一個誤區(qū),最小二乘法在任何情況下都可以算出來一個等式,因為這個方法只是使誤差和最小,所以哪怕是天大的誤差,他只要是誤差和里面最小的,就是該方法的結果,寫到這里大家應該知道我要說什么了,就算自變量和因變量完全沒有關系,該方法都會算出來一個結果,所以主要給大家講一下最小二乘法對數(shù)據(jù)集的要求:
1、正態(tài)性:對于固定的自變量,因變量呈正態(tài)性,意思是對于同一個答案,大部分原因是集中的;做回歸模型,用的就是大量的Y~X映射樣本來回歸,如果引起Y的樣本很凌亂,那就無法回歸
2、獨立性:每個樣本的Y都是相互獨立的,這個很好理解,答案和答案之間不能有聯(lián)系,就像擲硬幣一樣,如果第一次是反面,讓你預測拋兩次有反面的概率,那結果就沒必要預測了
3、線性:就是X和Y是相關的,其實世間萬物都是相關的,蝴蝶和龍卷風(還是海嘯來著)都是有關的嘛,只是直接相關還是間接相關的關系,這里的相關是指自變量和因變量直接相關
4、同方差性:因變量的方差不隨自變量的水平不同而變化。方差我在描述性統(tǒng)計量分析里面寫過,表示的數(shù)據(jù)集的變異性,所以這里的要求就是結果的變異性是不變的,舉例,腦袋軸了,想不出例子,畫個圖來說明。(我們希望每一個自變量對應的結果都是在一個盡量小的范圍)
我們用回歸方法建模,要盡量消除上述幾點的影響,下面具體講一下簡單回歸的流程(其他的其實都類似,能把這個講清楚了,其他的也差不多):
first,找指標,找你要預測變量的相關指標(第一步應該是找你要預測什么變量,這個話題有點大,涉及你的業(yè)務目標,老板的目的,達到該目的最關鍵的業(yè)務指標等等,我們后續(xù)的話題在聊,這里先把方法講清楚),找相關指標,標準做法是業(yè)務專家出一些指標,我們在測試這些指標哪些相關性高,但是我經(jīng)歷的大部分公司業(yè)務人員在建模初期是不靠譜的(真的不靠譜,沒思路,沒想法,沒意見),所以我的做法是將該業(yè)務目的所有相關的指標都拿到(有時候上百個),然后跑一個相關性分析,在來個主成分分析,就過濾的差不多了,然后給業(yè)務專家看,這時候他們就有思路了(先要有東西激活他們),會給一些你想不到的指標。預測變量是最重要的,直接關系到你的結果和產(chǎn)出,所以這是一個多輪優(yōu)化的過程。
第二,找數(shù)據(jù),這個就不多說了,要么按照時間軸找(我認為比較好的方式,大部分是有規(guī)律的),要么按照橫切面的方式,這個就意味橫切面的不同點可能波動較大,要小心一點;同時對數(shù)據(jù)的基本處理要有,包括對極值的處理以及空值的處理。
第三, 建立回歸模型,這步是最簡單的,所有的挖掘工具都提供了各種回歸方法,你的任務就是把前面準備的東西告訴計算機就可以了。
第四,檢驗和修改,我們用工具計算好的模型,都有各種假設檢驗的系數(shù),你可以馬上看到你這個模型的好壞,同時去修改和優(yōu)化,這里主要就是涉及到一個查準率,表示預測的部分里面,真正正確的所占比例;另一個是查全率,表示了全部真正正確的例子,被預測到的概率;查準率和查全率一般情況下成反比,所以我們要找一個平衡點。
第五,解釋,使用,這個就是見證奇跡的時刻了,見證前一般有很久時間,這個時間就是你給老板或者客戶解釋的時間了,解釋為啥有這些變量,解釋為啥我們選擇這個平衡點(是因為業(yè)務力量不足還是其他的),為啥做了這么久出的東西這么差(這個就尷尬了)等等。
回歸就先和大家聊這么多,下一輪給大家聊聊主成分分析和相關性分析的研究,然后在聊聊數(shù)據(jù)挖掘另一個利器--聚類。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關聯(lián)查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結構數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結構數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預期算子的內(nèi)涵、作用與應用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結構數(shù)據(jù)特征價值的專業(yè)核心 表結構數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結構化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應用 在數(shù)據(jù)分析與統(tǒng)計學領域,假設檢驗是驗證研究假設、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結構數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結構數(shù)據(jù)(以 “行 - 列” 存儲的結構化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結構數(shù)據(jù)價值的核心操盤手 表格結構數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務邏輯:從規(guī)則拆解到數(shù)據(jù)把關的實戰(zhàn)指南 在業(yè)務系統(tǒng)落地過程中,“業(yè)務邏輯” 是連接 “需求設計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10