
大數(shù)據(jù)量最近的存儲分表常見算法
當一個應用的數(shù)據(jù)量大的時候,我們用單表和單庫來存儲會嚴重影響操作速度,如mysql的myisam存儲,我們經(jīng)過測試,200w以下的時候,mysql的訪問速度都很快,但是如果超過200w以上的數(shù)據(jù),他的訪問速度會急劇下降,影響到我們webapp的訪問速度,而且數(shù)據(jù)量太大的話,如果用單表存儲,就會使得系統(tǒng)相當?shù)牟环€(wěn)定,mysql服務很容易掛掉。所以當數(shù)據(jù)量超過200w的時候,建議系統(tǒng)工程師還是考慮分表.
以下是幾種常見的分表算法。
1.按自然時間來分表/分庫;
如一個應用的數(shù)據(jù)在一年后數(shù)據(jù)量會達到200w左右,那么我們就可以考慮用一年的數(shù)據(jù)來做為一個表或者庫來存儲,例如,表名為app,那么2010年的數(shù)據(jù)就是app_2010,app_2011;如果數(shù)據(jù)量在一個月就達到了200w左右,那么我們就可以用月份來分,app_2010_01,app_2010_02.
2.按數(shù)字類型hash分表/分庫;
如果我們要存儲用戶的信息,我們應用的注冊量很大,我們用單表是不能滿足存儲需求的,那么我們就可以用用戶的編號來進行hash,常見的是用取余操作,如果我們要分30張表來存儲用戶的信息,那么用戶編號為1的用戶1%30=1,那么我們就存在user_01表里,如用戶的編號為500,那么500%30=20,那么我們就將此用戶的信息存儲在user_20的表里.
3.按md5值來分表/分庫;
我們假設要存儲用戶上傳的文件,如果上傳量大的話,也會帶來系統(tǒng)的瓶頸問題,我們做過試驗,在一個文件夾下如果超過200個文件的話,文件的瀏覽效率會降低,當然,這個不屬于我們本文討論的范圍,這塊也要做散列操作.我們可以用文件的用戶名來md5或者用文件的md5校驗值來做,我們就可以用md5的前5位來做hash,這樣最多我們就可以得到5^5=3125個表,每次在存儲文件的時候,就可以用文件名的md5值的前5位來確定這個文件該存那張表.
4.實例:某微博的url加密算法和存儲策略的猜想.
現(xiàn)在好多微博都用這樣的url來訪問,如果他們的域名為www.example.com,那么如果你發(fā)微博的時候,你會發(fā)現(xiàn)你所發(fā)的url都變成了http://t.cn/Mx4ja1,這樣的形式,他們是怎么進行這樣的轉換呢?我猜想就是用到了我們上面講的md5的存儲和查找規(guī)則,用你發(fā)的url來進行md5,得到md5值之后,如我們例子來說,就會用前6位來進行分表.
5.分表所帶來的問題.
分表也會帶來一系列的問題,如分頁的實現(xiàn),統(tǒng)計的實現(xiàn),如果我們要做一個所有數(shù)據(jù)的分頁,那么我們得每張表都得遍歷一遍,這樣訪問效率會很低下.之前我嘗試過用mysql的代理來實現(xiàn),最終用tcsql來實現(xiàn)了.
6.分表算法的選擇.
首先,分表適合于沒有大的列表的應用來使用,要不然,會為這部分做好多額外的工作,如果你的應用數(shù)據(jù)量不是特別大的話,最好別用分表。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉換:從基礎用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關聯(lián)查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結構數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結構數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預期算子的內涵、作用與應用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結構數(shù)據(jù)特征價值的專業(yè)核心 表結構數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結構化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應用 在數(shù)據(jù)分析與統(tǒng)計學領域,假設檢驗是驗證研究假設、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結構數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結構數(shù)據(jù)(以 “行 - 列” 存儲的結構化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結構數(shù)據(jù)價值的核心操盤手 表格結構數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務邏輯:從規(guī)則拆解到數(shù)據(jù)把關的實戰(zhàn)指南 在業(yè)務系統(tǒng)落地過程中,“業(yè)務邏輯” 是連接 “需求設計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10