
python中numpy包使用教程之?dāng)?shù)組和相關(guān)操作詳解
大家應(yīng)該都有所了解,下面就簡(jiǎn)單介紹下Numpy,NumPy(Numerical Python)是一個(gè)用于科學(xué)計(jì)算第三方的Python包。
NumPy提供了許多高級(jí)的數(shù)值編程工具,如:矩陣數(shù)據(jù)類(lèi)型、矢量處理,以及精密的運(yùn)算庫(kù)。專(zhuān)為進(jìn)行嚴(yán)格的數(shù)字處理而產(chǎn)生。下面本文將詳細(xì)介紹關(guān)于python中numpy包使用教程之?dāng)?shù)組和相關(guān)操作的相關(guān)內(nèi)容,下面話(huà)不多說(shuō),來(lái)一起看看詳細(xì)的介紹:
一、數(shù)組簡(jiǎn)介
Numpy中,最重要的數(shù)據(jù)結(jié)構(gòu)是:多維數(shù)組類(lèi)型(numpy.ndarray)
ndarray由兩部分組成:
實(shí)際所持有的數(shù)據(jù);
描述這些數(shù)據(jù)的元數(shù)據(jù)(metadata)
數(shù)組(即矩陣)的維度被稱(chēng)為axes,維數(shù)稱(chēng)為rank
ndarray 的重要屬性包括:
ndarray.ndim:數(shù)組的維數(shù),也稱(chēng)為rank
ndarray.shape:數(shù)組各維的大小,對(duì)一個(gè)n行m列的矩陣來(lái)說(shuō), shape 為 (n,m)
ndarray.size:元素的總數(shù)。
ndarray.dtype:每個(gè)元素的類(lèi)型,可以是numpy.int32, numpy.int16, and numpy.float64等
ndarray.itemsize:每個(gè)元素占用的字節(jié)數(shù)。
ndarray.data:指向數(shù)據(jù)內(nèi)存。
二、數(shù)組的使用
使用numpy前要先導(dǎo)入模塊,使用下面的語(yǔ)句導(dǎo)入模塊:
improt numpy as np #其中np為numpy的別名,是一種習(xí)慣用法
1.使用array方法生成數(shù)組
array,也就是數(shù)組,是numpy中最基礎(chǔ)的數(shù)據(jù)結(jié)構(gòu),最關(guān)鍵的屬性是維度和元素類(lèi)型,在numpy中,可以非常方便地創(chuàng)建各種不同類(lèi)型的多維數(shù)組,并且執(zhí)行一些基本基本操作,生成數(shù)組的方法有一下幾種:
以list或tuple變量產(chǎn)生以為數(shù)組:
>>> print np.array([1,2,3,4])
[1 2 3 4]
>>> print np.array((1.2,2,3,4))
[ 1.2 2. 3. 4. ]
以list或tuple變量為元素產(chǎn)生二維數(shù)組或者多維數(shù)組:
>>> x = np.array(((1,2,3),(4,5,6)))
>>> x
array([[1, 2, 3],
[4, 5, 6]])
>>> y = np.array([[1,2,3],[4,5,6]])
>>> y
array([[1, 2, 3],
[4, 5, 6]])
2.使用numpy.arange方法生成數(shù)組
>>> print np.arange(15)
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14]
>>> print type(np.arange(15))
<type 'numpy.ndarray'>
3.使用內(nèi)置函數(shù)生成特殊矩陣(數(shù)組)
零矩陣
>>> print np.zeros((3,4))
[[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]]
一矩陣
>>> print np.ones((3,4))
[[ 1. 1. 1. 1.]
[1. 1. 1. 1.]
[ 1. 1. 1. 1.]]
單位矩陣
>>> print np.eye(3)
[[ 1. 0. 0.]
[0. 1. 0.]
[ 0. 0. 1.]]
4.索引與切片
>>> x = np.array(((1,2,3),(4,5,6)))
>>> x[1,2] #獲取第二行第三列的數(shù)
6
>>> y=x[:,1] #獲取第二列
>>> y
array([2, 5])
與python語(yǔ)法一致,不再舉例。
5.獲取數(shù)組屬性
>>> a = np.zeros((2,2,2))
>>> print a.ndim #數(shù)組的維數(shù)
3
>>> print a.shape #數(shù)組每一維的大小
(2, 2, 2)
>>> print a.size #數(shù)組的元素?cái)?shù)
8
>>> print a.dtype #元素類(lèi)型
float64
>>> print a.itemsize #每個(gè)元素所占的字節(jié)數(shù)
8
6.數(shù)組變換
多維轉(zhuǎn)換為一維:
>>> x
array([[1, 2, 3],
[4, 5, 6]])
>>> x.flatten()
array([1, 2, 3, 4, 5, 6])
一維轉(zhuǎn)換為多維:
>>> print np.arange(15).reshape(3,5) #改變形狀,將一維的改成三行五列
[[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 14]]
轉(zhuǎn)置:
>>> x
array([[1, 2, 3],
[4, 5, 6]])
>>> x.transpose()
array([[1, 4],
[2, 5],
[3, 6]])
7.數(shù)組組合
水平組合:
>>> y=x
>>> numpy.hstack((x,y))
array([[1, 2, 3, 1, 2, 3],
[4, 5, 6, 4, 5, 6]]
垂直組合
>>> numpy.vstack((x,y))
array([[1, 2, 3],
[4, 5, 6],
[1, 2, 3],
[4, 5, 6]])
用concatenate函數(shù)可以同時(shí)實(shí)現(xiàn)這兩種方式,通過(guò)指定axis參數(shù),默認(rèn)為0,垂直組合。
>>> numpy.concatenate((x,y))
array([[1, 2, 3],
[4, 5, 6],
[1, 2, 3],
[4, 5, 6]])
>>> numpy.concatenate((x,y),axis=1)
array([[1, 2, 3, 1, 2, 3],
[4, 5, 6, 4, 5, 6]])
8.數(shù)組分割
垂直分割
>>> z
array([[1, 2, 3],
[4, 5, 6],
[1, 2, 3],
[4, 5, 6]])
>>> numpy.vsplit(z,2) #注意這里設(shè)置的分割數(shù)目必須可以被行數(shù)整除
[array([[1, 2, 3],
[4, 5, 6]]), array([[1, 2, 3],
[4, 5, 6]])]
水平分割
>>> numpy.hsplit(z,3)
[array([[1],
[4],
[1],
[4]]), array([[2],
[5],
[2],
[5]]), array([[3],
[6],
[3],
[6]])]
用split函數(shù)可以同時(shí)實(shí)現(xiàn)這兩個(gè)效果,通過(guò)設(shè)置其axis參數(shù)區(qū)別,與組合類(lèi)似,這里不在演示。
三、矩陣
通過(guò)上面對(duì)數(shù)組的操作可以知道,numpy中可以通過(guò)數(shù)組模擬矩陣,但是numpy也有專(zhuān)門(mén)處理矩陣的數(shù)據(jù)結(jié)構(gòu)——matrix。
1.生成矩陣
>>> numpy.mat('1 2 3;4 5 6;7 8 9')
matrix([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
2.數(shù)組矩陣轉(zhuǎn)化
矩陣轉(zhuǎn)數(shù)組
>>> m=numpy.mat('1 2 3;4 5 6;7 8 9')
>>> numpy.array(m)
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
數(shù)組轉(zhuǎn)矩陣
>>> n=numpy.array(m)
>>> numpy.mat(n)
matrix([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
3.矩陣方法
求逆:
>>> m.I
matrix([[ -4.50359963e+15, 9.00719925e+15, -4.50359963e+15],
[ 9.00719925e+15, -1.80143985e+16, 9.00719925e+15],
[ -4.50359963e+15, 9.00719925e+15, -4.50359963e+15]])
總結(jié)
以上就是這篇文章的全部?jī)?nèi)容了,希望本文的內(nèi)容對(duì)大家的學(xué)習(xí)或者工作能帶來(lái)一定的幫助
數(shù)據(jù)分析咨詢(xún)請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無(wú)論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢(xún)效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫(kù)管理中,“大表” 始終是性能優(yōu)化繞不開(kāi)的話(huà)題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫(kù)表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開(kāi)始提取前,需先判斷 TIF 文件的類(lèi)型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專(zhuān)業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫(kù)表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫(kù))處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場(chǎng)景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專(zhuān)業(yè)操盤(pán)手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對(duì)象的 text 與 content:區(qū)別、場(chǎng)景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請(qǐng)求開(kāi)發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤(pán)手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫(kù)表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請(qǐng)求工具對(duì)比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請(qǐng)求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問(wèn)題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問(wèn)題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營(yíng)問(wèn)題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過(guò)程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶(hù)體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營(yíng)銷(xiāo)案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見(jiàn)頂” 的當(dāng)下,精準(zhǔn)營(yíng)銷(xiāo)成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價(jià)值 在數(shù)據(jù)驅(qū)動(dòng)決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類(lèi)分析:從操作實(shí)踐到業(yè)務(wù)價(jià)值挖掘 在數(shù)據(jù)分析場(chǎng)景中,聚類(lèi)分析作為 “無(wú)監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價(jià)值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡(jiǎn)單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10