
Python+Opencv識(shí)別兩張相似圖片
在網(wǎng)上看到python做圖像識(shí)別的相關(guān)文章后,真心感覺python的功能實(shí)在太強(qiáng)大,因此將這些文章總結(jié)一下,建立一下自己的知識(shí)體系。
當(dāng)然了,圖像識(shí)別這個(gè)話題作為計(jì)算機(jī)科學(xué)的一個(gè)分支,不可能就在本文簡單幾句就說清,所以本文只作基本算法的科普向。
看到一篇博客是介紹這個(gè),但他用的是PIL中的Image實(shí)現(xiàn)的,感覺比較麻煩,于是利用Opencv庫進(jìn)行了更簡潔化的實(shí)現(xiàn)。
相關(guān)背景
要識(shí)別兩張相似圖像,我們從感性上來談是怎么樣的一個(gè)過程?首先我們會(huì)區(qū)分這兩張相片的類型,例如是風(fēng)景照,還是人物照。風(fēng)景照中,是沙漠還是海洋,人物照中,兩個(gè)人是不是都是國字臉,還是瓜子臉(還是倒瓜子臉……哈哈……)。
那么從機(jī)器的角度來說也是這樣的,先識(shí)別圖像的特征,然后再相比。
很顯然,在沒有經(jīng)過訓(xùn)練的計(jì)算機(jī)(即建立模型),那么計(jì)算機(jī)很難區(qū)分什么是海洋,什么是沙漠。但是計(jì)算機(jī)很容易識(shí)別到圖像的像素值。
因此,在圖像識(shí)別中,顏色特征是最為常用的。(其余常用的特征還有紋理特征、形狀特征和空間關(guān)系特征等)
其中又分為
直方圖
顏色集
顏色矩
聚合向量
相關(guān)圖
直方圖計(jì)算法
這里先用直方圖進(jìn)行簡單講述。
先借用一下戀花蝶的圖片,
從肉眼來看,這兩張圖片大概也有八成是相似的了。
在Python中利用opencv中的calcHist()方法獲取其直方圖數(shù)據(jù),返回的結(jié)果是一個(gè)列表,使用matplotlib,畫出了這兩張圖的直方圖數(shù)據(jù)圖
如下:
是的,我們可以明顯的發(fā)現(xiàn),兩張圖片的直方圖還是比較重合的。所以利用直方圖判斷兩張圖片的是否相似的方法就是,計(jì)算其直方圖的重合程度即可。
計(jì)算方法如下:
其中g(shù)i和si是分別指兩條曲線的第i個(gè)點(diǎn)。
最后計(jì)算得出的結(jié)果就是就是其相似程度。
不過,這種方法有一個(gè)明顯的弱點(diǎn),就是他是按照顏色的全局分布來看的,無法描述顏色的局部分布和色彩所處的位置。
也就是假如一張圖片以藍(lán)色為主,內(nèi)容是一片藍(lán)天,而另外一張圖片也是藍(lán)色為主,但是內(nèi)容卻是妹子穿了藍(lán)色裙子,那么這個(gè)算法也很可能認(rèn)為這兩張圖片的相似的。
緩解這個(gè)弱點(diǎn)有一個(gè)方法就是利用Image的crop方法把圖片等分,然后再分別計(jì)算其相似度,最后綜合考慮。
圖像指紋與漢明距離
在介紹下面其他判別相似度的方法前,先補(bǔ)充一些概念。第一個(gè)就是圖像指紋
圖像指紋和人的指紋一樣,是身份的象征,而圖像指紋簡單點(diǎn)來講,就是將圖像按照一定的哈希算法,經(jīng)過運(yùn)算后得出的一組二進(jìn)制數(shù)字。
說到這里,就可以順帶引出漢明距離的概念了。
假如一組二進(jìn)制數(shù)據(jù)為101,另外一組為111,那么顯然把第一組的第二位數(shù)據(jù)0改成1就可以變成第二組數(shù)據(jù)111,所以兩組數(shù)據(jù)的漢明距離就為1
簡單點(diǎn)說,漢明距離就是一組二進(jìn)制數(shù)據(jù)變成另一組數(shù)據(jù)所需的步驟數(shù),顯然,這個(gè)數(shù)值可以衡量兩張圖片的差異,漢明距離越小,則代表相似度越高。漢明距離為0,即代表兩張圖片完全一樣。
如何計(jì)算得到漢明距離,請(qǐng)看下面三種哈希算法
平均哈希法(aHash)
此算法是基于比較灰度圖每個(gè)像素與平均值來實(shí)現(xiàn)的
一般步驟:
1.縮放圖片,一般大小為8*8,64個(gè)像素值。
2.轉(zhuǎn)化為灰度圖
3.計(jì)算平均值:計(jì)算進(jìn)行灰度處理后圖片的所有像素點(diǎn)的平均值,直接用numpy中的mean()計(jì)算即可。
4.比較像素灰度值:遍歷灰度圖片每一個(gè)像素,如果大于平均值記錄為1,否則為0.
5.得到信息指紋:組合64個(gè)bit位,順序隨意保持一致性。
最后比對(duì)兩張圖片的指紋,獲得漢明距離即可。
感知哈希算法(pHash)
平均哈希算法過于嚴(yán)格,不夠精確,更適合搜索縮略圖,為了獲得更精確的結(jié)果可以選擇感知哈希算法,它采用的是DCT(離散余弦變換)來降低頻率的方法
一般步驟:
縮小圖片:32 * 32是一個(gè)較好的大小,這樣方便DCT計(jì)算
轉(zhuǎn)化為灰度圖
計(jì)算DCT:利用Opencv中提供的dct()方法,注意輸入的圖像必須是32位浮點(diǎn)型,所以先利用numpy中的float32進(jìn)行轉(zhuǎn)換
縮小DCT:DCT計(jì)算后的矩陣是32 * 32,保留左上角的8 * 8,這些代表的圖片的最低頻率
計(jì)算平均值:計(jì)算縮小DCT后的所有像素點(diǎn)的平均值。
進(jìn)一步減小DCT:大于平均值記錄為1,反之記錄為0.
得到信息指紋:組合64個(gè)信息位,順序隨意保持一致性。
最后比對(duì)兩張圖片的指紋,獲得漢明距離即可。
dHash算法
相比pHash,dHash的速度要快的多,相比aHash,dHash在效率幾乎相同的情況下的效果要更好,它是基于漸變實(shí)現(xiàn)的。
步驟:
縮小圖片:收縮到9*8的大小,以便它有72的像素點(diǎn)
轉(zhuǎn)化為灰度圖
計(jì)算差異值:dHash算法工作在相鄰像素之間,這樣每行9個(gè)像素之間產(chǎn)生了8個(gè)不同的差異,一共8行,則產(chǎn)生了64個(gè)差異值
獲得指紋:如果左邊的像素比右邊的更亮,則記錄為1,否則為0.
最后比對(duì)兩張圖片的指紋,獲得漢明距離即可。
整個(gè)的代碼實(shí)現(xiàn)如下:
# -*- coding: utf-8 -*-
#feimengjuan
# 利用python實(shí)現(xiàn)多種方法來實(shí)現(xiàn)圖像識(shí)別
import cv2
import numpy as np
from matplotlib import pyplot as plt
# 最簡單的以灰度直方圖作為相似比較的實(shí)現(xiàn)
def classify_gray_hist(image1,image2,size = (256,256)):
# 先計(jì)算直方圖
# 幾個(gè)參數(shù)必須用方括號(hào)括起來
# 這里直接用灰度圖計(jì)算直方圖,所以是使用第一個(gè)通道,
# 也可以進(jìn)行通道分離后,得到多個(gè)通道的直方圖
# bins 取為16
image1 = cv2.resize(image1,size)
image2 = cv2.resize(image2,size)
hist1 = cv2.calcHist([image1],[0],None,[256],[0.0,255.0])
hist2 = cv2.calcHist([image2],[0],None,[256],[0.0,255.0])
# 可以比較下直方圖
plt.plot(range(256),hist1,'r')
plt.plot(range(256),hist2,'b')
plt.show()
# 計(jì)算直方圖的重合度
degree = 0
for i in range(len(hist1)):
if hist1[i] != hist2[i]:
degree = degree + (1 - abs(hist1[i]-hist2[i])/max(hist1[i],hist2[i]))
else:
degree = degree + 1
degree = degree/len(hist1)
return degree
# 計(jì)算單通道的直方圖的相似值
def calculate(image1,image2):
hist1 = cv2.calcHist([image1],[0],None,[256],[0.0,255.0])
hist2 = cv2.calcHist([image2],[0],None,[256],[0.0,255.0])
# 計(jì)算直方圖的重合度
degree = 0
for i in range(len(hist1)):
if hist1[i] != hist2[i]:
degree = degree + (1 - abs(hist1[i]-hist2[i])/max(hist1[i],hist2[i]))
else:
degree = degree + 1
degree = degree/len(hist1)
return degree
# 通過得到每個(gè)通道的直方圖來計(jì)算相似度
def classify_hist_with_split(image1,image2,size = (256,256)):
# 將圖像resize后,分離為三個(gè)通道,再計(jì)算每個(gè)通道的相似值
image1 = cv2.resize(image1,size)
image2 = cv2.resize(image2,size)
sub_image1 = cv2.split(image1)
sub_image2 = cv2.split(image2)
sub_data = 0
for im1,im2 in zip(sub_image1,sub_image2):
sub_data += calculate(im1,im2)
sub_data = sub_data/3
return sub_data
# 平均哈希算法計(jì)算
def classify_aHash(image1,image2):
image1 = cv2.resize(image1,(8,8))
image2 = cv2.resize(image2,(8,8))
gray1 = cv2.cvtColor(image1,cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(image2,cv2.COLOR_BGR2GRAY)
hash1 = getHash(gray1)
hash2 = getHash(gray2)
return Hamming_distance(hash1,hash2)
def classify_pHash(image1,image2):
image1 = cv2.resize(image1,(32,32))
image2 = cv2.resize(image2,(32,32))
gray1 = cv2.cvtColor(image1,cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(image2,cv2.COLOR_BGR2GRAY)
# 將灰度圖轉(zhuǎn)為浮點(diǎn)型,再進(jìn)行dct變換
dct1 = cv2.dct(np.float32(gray1))
dct2 = cv2.dct(np.float32(gray2))
# 取左上角的8*8,這些代表圖片的最低頻率
# 這個(gè)操作等價(jià)于c++中利用opencv實(shí)現(xiàn)的掩碼操作
# 在python中進(jìn)行掩碼操作,可以直接這樣取出圖像矩陣的某一部分
dct1_roi = dct1[0:8,0:8]
dct2_roi = dct2[0:8,0:8]
hash1 = getHash(dct1_roi)
hash2 = getHash(dct2_roi)
return Hamming_distance(hash1,hash2)
# 輸入灰度圖,返回hash
def getHash(image):
avreage = np.mean(image)
hash = []
for i in range(image.shape[0]):
for j in range(image.shape[1]):
if image[i,j] > avreage:
hash.append(1)
else:
hash.append(0)
return hash
# 計(jì)算漢明距離
def Hamming_distance(hash1,hash2):
num = 0
for index in range(len(hash1)):
if hash1[index] != hash2[index]:
num += 1
return num
if __name__ == '__main__':
img1 = cv2.imread('10.jpg')
cv2.imshow('img1',img1)
img2 = cv2.imread('11.jpg')
cv2.imshow('img2',img2)
degree = classify_gray_hist(img1,img2)
#degree = classify_hist_with_split(img1,img2)
#degree = classify_aHash(img1,img2)
#degree = classify_pHash(img1,img2)
print degree
cv2.waitKey(0)
以上就是本文的全部內(nèi)容,希望對(duì)大家學(xué)習(xí)python程序設(shè)計(jì)有所幫助。
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
LSTM 模型輸入長度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報(bào)考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代浪潮下,CDA 數(shù)據(jù)分析師認(rèn)證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計(jì)的實(shí)用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強(qiáng)大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實(shí)施重大更新。 此次更新旨在確保認(rèn) ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價(jià)值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時(shí)代,BI ...
2025-07-10SQL 在預(yù)測分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢預(yù)判? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代,預(yù)測分析作為挖掘數(shù)據(jù)潛在價(jià)值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價(jià)值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點(diǎn),而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報(bào)考到取證的全攻略? 在數(shù)字經(jīng)濟(jì)蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢性檢驗(yàn):捕捉數(shù)據(jù)背后的時(shí)間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢性檢驗(yàn)如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時(shí)間維度的精準(zhǔn)切片? ? 在數(shù)據(jù)的世界里,時(shí)間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準(zhǔn) ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實(shí)戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認(rèn)證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗(yàn):數(shù)據(jù)趨勢與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準(zhǔn)確捕捉數(shù)據(jù)的趨勢變化以及識(shí)別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認(rèn)證作為國內(nèi)權(quán)威的數(shù)據(jù)分析能力認(rèn)證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對(duì)策略? 長短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨(dú)特的門控機(jī)制,在 ...
2025-07-07統(tǒng)計(jì)學(xué)方法在市場調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場調(diào)研是企業(yè)洞察市場動(dòng)態(tài)、了解消費(fèi)者需求的重要途徑,而統(tǒng)計(jì)學(xué)方法則是市場調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當(dāng)下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動(dòng)力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準(zhǔn)確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動(dòng)力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價(jià)值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03