99999久久久久久亚洲,欧美人与禽猛交狂配,高清日韩av在线影院,一个人在线高清免费观看,啦啦啦在线视频免费观看www

熱線電話:13121318867

登錄
首頁精彩閱讀八大排序算法的Python實現(xiàn)
八大排序算法的Python實現(xiàn)
2017-10-01
收藏

八大排序算法的Python實現(xiàn)

這篇文章主要介紹了八大排序算法的Python實現(xiàn),對八大排序算法進行詳細描述和代碼實現(xiàn),具體內(nèi)容如下

1、插入排序

描述

插入排序的基本操作就是將一個數(shù)據(jù)插入到已經(jīng)排好序的有序數(shù)據(jù)中,從而得到一個新的、個數(shù)加一的有序數(shù)據(jù),算法適用于少量數(shù)據(jù)的排序,時間復雜度為O(n^2)。是穩(wěn)定的排序方法。插入算法把要排序的數(shù)組分成兩部分:第一部分包含了這個數(shù)組的所有元素,但將最后一個元素除外(讓數(shù)組多一個空間才有插入的位置),而第二部分就只包含這一個元素(即待插入元素)。在第一部分排序完成后,再將這個最后元素插入到已排好序的第一部分中。

代碼實現(xiàn)    
def insert_sort(lists):
  # 插入排序
  count = len(lists)
  for i in range(1, count):
    key = lists[i]
    j = i - 1
    while j >= 0:
      if lists[j] > key:
        lists[j + 1] = lists[j]
        lists[j] = key
      j -= 1
  return lists

2、希爾排序

描述

希爾排序(Shell Sort)是插入排序的一種。也稱縮小增量排序,是直接插入排序算法的一種更高效的改進版本。希爾排序是非穩(wěn)定排序算法。該方法因DL.Shell于1959年提出而得名。 希爾排序是把記錄按下標的一定增量分組,對每組使用直接插入排序算法排序;隨著增量逐漸減少,每組包含的關鍵詞越來越多,當增量減至1時,整個文件恰被分成一組,算法便終止。

代碼實現(xiàn)    
def shell_sort(lists):
  # 希爾排序
  count = len(lists)
  step = 2
  group = count / step
  while group > 0:
    for i in range(0, group):
      j = i + group
      while j < count:
        k = j - group
        key = lists[j]
        while k >= 0:
          if lists[k] > key:
            lists[k + group] = lists[k]
            lists[k] = key
          k -= group
        j += group
    group /= step
  return lists

3、冒泡排序

描述

它重復地走訪過要排序的數(shù)列,一次比較兩個元素,如果他們的順序錯誤就把他們交換過來。走訪數(shù)列的工作是重復地進行直到?jīng)]有再需要交換,也就是說該數(shù)列已經(jīng)排序完成。

代碼實現(xiàn)    
def bubble_sort(lists):
  # 冒泡排序
  count = len(lists)
  for i in range(0, count):
    for j in range(i + 1, count):
      if lists[i] > lists[j]:
        lists[i], lists[j] = lists[j], lists[i]
  return lists

4、快速排序

描述

通過一趟排序將要排序的數(shù)據(jù)分割成獨立的兩部分,其中一部分的所有數(shù)據(jù)都比另外一部分的所有數(shù)據(jù)都要小,然后再按此方法對這兩部分數(shù)據(jù)分別進行快速排序,整個排序過程可以遞歸進行,以此達到整個數(shù)據(jù)變成有序序列。

代碼實現(xiàn)    
def quick_sort(lists, left, right):
  # 快速排序
  if left >= right:
    return lists
  key = lists[left]
  low = left
  high = right
  while left < right:
    while left < right and lists[right] >= key:
      right -= 1
    lists[left] = lists[right]
    while left < right and lists[left] <= key:
      left += 1
    lists[right] = lists[left]
  lists[right] = key
  quick_sort(lists, low, left - 1)
  quick_sort(lists, left + 1, high)
  return lists

5、直接選擇排序

描述

基本思想:第1趟,在待排序記錄r1 ~ r[n]中選出最小的記錄,將它與r1交換;第2趟,在待排序記錄r2 ~ r[n]中選出最小的記錄,將它與r2交換;以此類推,第i趟在待排序記錄r[i] ~ r[n]中選出最小的記錄,將它與r[i]交換,使有序序列不斷增長直到全部排序完畢。

代碼實現(xiàn)
    
def select_sort(lists):
  # 選擇排序
  count = len(lists)
  for i in range(0, count):
    min = i
    for j in range(i + 1, count):
      if lists[min] > lists[j]:
        min = j
    lists[min], lists[i] = lists[i], lists[min]
  return lists

6、堆排序

描述

堆排序(Heapsort)是指利用堆積樹(堆)這種數(shù)據(jù)結構所設計的一種排序算法,它是選擇排序的一種??梢岳脭?shù)組的特點快速定位指定索引的元素。堆分為大根堆和小根堆,是完全二叉樹。大根堆的要求是每個節(jié)點的值都不大于其父節(jié)點的值,即A[PARENT[i]] >= A[i]。在數(shù)組的非降序排序中,需要使用的就是大根堆,因為根據(jù)大根堆的要求可知,最大的值一定在堆頂。

代碼實現(xiàn)    
# 調(diào)整堆
def adjust_heap(lists, i, size):
  lchild = 2 * i + 1
  rchild = 2 * i + 2
  max = i
  if i < size / 2:
    if lchild < size and lists[lchild] > lists[max]:
      max = lchild
    if rchild < size and lists[rchild] > lists[max]:
      max = rchild
    if max != i:
      lists[max], lists[i] = lists[i], lists[max]
      adjust_heap(lists, max, size)
 
# 創(chuàng)建堆
def build_heap(lists, size):
  for i in range(0, (size/2))[::-1]:
    adjust_heap(lists, i, size)
 
# 堆排序
def heap_sort(lists):
  size = len(lists)
  build_heap(lists, size)
  for i in range(0, size)[::-1]:
    lists[0], lists[i] = lists[i], lists[0]
    adjust_heap(lists, 0, i)

7、歸并排序

描述

歸并排序是建立在歸并操作上的一種有效的排序算法,該算法是采用分治法(Divide and Conquer)的一個非常典型的應用。將已有序的子序列合并,得到完全有序的序列;即先使每個子序列有序,再使子序列段間有序。若將兩個有序表合并成一個有序表,稱為二路歸并。

歸并過程為:比較a[i]和a[j]的大小,若a[i]≤a[j],則將第一個有序表中的元素a[i]復制到r[k]中,并令i和k分別加上1;否則將第二個有序表中的元素a[j]復制到r[k]中,并令j和k分別加上1,如此循環(huán)下去,直到其中一個有序表取完,然后再將另一個有序表中剩余的元素復制到r中從下標k到下標t的單元。歸并排序的算法我們通常用遞歸實現(xiàn),先把待排序區(qū)間[s,t]以中點二分,接著把左邊子區(qū)間排序,再把右邊子區(qū)間排序,最后把左區(qū)間和右區(qū)間用一次歸并操作合并成有序的區(qū)間[s,t]。 代碼實現(xiàn)    

def merge(left, right):
  i, j = 0, 0
  result = []
  while i < len(left) and j < len(right):
    if left[i] <= right[j]:
      result.append(left[i])
      i += 1
    else:
      result.append(right[j])
      j += 1
  result += left[i:]
  result += right[j:]
  return result
 
def merge_sort(lists):
  # 歸并排序
  if len(lists) <= 1:
    return lists
  num = len(lists) / 2
  left = merge_sort(lists[:num])
  right = merge_sort(lists[num:])
  return merge(left, right)

8、基數(shù)排序

描述

基數(shù)排序(radix sort)屬于“分配式排序”(distribution sort),又稱“桶子法”(bucket sort)或bin sort,顧名思義,它是透過鍵值的部份資訊,將要排序的元素分配至某些“桶”中,藉以達到排序的作用,基數(shù)排序法是屬于穩(wěn)定性的排序,其時間復雜度為O (nlog(r)m),其中r為所采取的基數(shù),而m為堆數(shù),在某些時候,基數(shù)排序法的效率高于其它的穩(wěn)定性排序法。

代碼實現(xiàn)    
import math
def radix_sort(lists, radix=10):
  k = int(math.ceil(math.log(max(lists), radix)))
  bucket = [[] for i in range(radix)]
  for i in range(1, k+1):
    for j in lists:
      bucket[j/(radix**(i-1)) % (radix**i)].append(j)
    del lists[:]
    for z in bucket:
      lists += z
      del z[:]
  return lists

以上就是Python實現(xiàn)八大排序算法的詳細介紹,希望對大家的學習有所幫助。

數(shù)據(jù)分析咨詢請掃描二維碼

若不方便掃碼,搜微信號:CDAshujufenxi

數(shù)據(jù)分析師資訊
更多

OK
客服在線
立即咨詢
客服在線
立即咨詢
') } function initGt() { var handler = function (captchaObj) { captchaObj.appendTo('#captcha'); captchaObj.onReady(function () { $("#wait").hide(); }).onSuccess(function(){ $('.getcheckcode').removeClass('dis'); $('.getcheckcode').trigger('click'); }); window.captchaObj = captchaObj; }; $('#captcha').show(); $.ajax({ url: "/login/gtstart?t=" + (new Date()).getTime(), // 加隨機數(shù)防止緩存 type: "get", dataType: "json", success: function (data) { $('#text').hide(); $('#wait').show(); // 調(diào)用 initGeetest 進行初始化 // 參數(shù)1:配置參數(shù) // 參數(shù)2:回調(diào),回調(diào)的第一個參數(shù)驗證碼對象,之后可以使用它調(diào)用相應的接口 initGeetest({ // 以下 4 個配置參數(shù)為必須,不能缺少 gt: data.gt, challenge: data.challenge, offline: !data.success, // 表示用戶后臺檢測極驗服務器是否宕機 new_captcha: data.new_captcha, // 用于宕機時表示是新驗證碼的宕機 product: "float", // 產(chǎn)品形式,包括:float,popup width: "280px", https: true // 更多配置參數(shù)說明請參見:http://docs.geetest.com/install/client/web-front/ }, handler); } }); } function codeCutdown() { if(_wait == 0){ //倒計時完成 $(".getcheckcode").removeClass('dis').html("重新獲取"); }else{ $(".getcheckcode").addClass('dis').html("重新獲取("+_wait+"s)"); _wait--; setTimeout(function () { codeCutdown(); },1000); } } function inputValidate(ele,telInput) { var oInput = ele; var inputVal = oInput.val(); var oType = ele.attr('data-type'); var oEtag = $('#etag').val(); var oErr = oInput.closest('.form_box').next('.err_txt'); var empTxt = '請輸入'+oInput.attr('placeholder')+'!'; var errTxt = '請輸入正確的'+oInput.attr('placeholder')+'!'; var pattern; if(inputVal==""){ if(!telInput){ errFun(oErr,empTxt); } return false; }else { switch (oType){ case 'login_mobile': pattern = /^1[3456789]\d{9}$/; if(inputVal.length==11) { $.ajax({ url: '/login/checkmobile', type: "post", dataType: "json", data: { mobile: inputVal, etag: oEtag, page_ur: window.location.href, page_referer: document.referrer }, success: function (data) { } }); } break; case 'login_yzm': pattern = /^\d{6}$/; break; } if(oType=='login_mobile'){ } if(!!validateFun(pattern,inputVal)){ errFun(oErr,'') if(telInput){ $('.getcheckcode').removeClass('dis'); } }else { if(!telInput) { errFun(oErr, errTxt); }else { $('.getcheckcode').addClass('dis'); } return false; } } return true; } function errFun(obj,msg) { obj.html(msg); if(msg==''){ $('.login_submit').removeClass('dis'); }else { $('.login_submit').addClass('dis'); } } function validateFun(pat,val) { return pat.test(val); }