
R語(yǔ)言與函數(shù)估計(jì)學(xué)習(xí)筆記(樣條方法)
樣條估計(jì)
如果函數(shù)在不同地方有不同的非線性度,或者有多個(gè)極值點(diǎn),那么用多項(xiàng)式特別是低階多項(xiàng)式來(lái)完成擬合是非常不合適的。一種解決辦法是我們之前提到的近鄰多項(xiàng)式(或者稱局部多項(xiàng)式),另一種就是樣條——用分段的低階多項(xiàng)式逼近函數(shù)。
關(guān)于樣條,常用的有兩類,一類是多項(xiàng)式樣條,另一類是光滑樣條。
多項(xiàng)式樣條
多項(xiàng)式樣條的樣條基有很多,最為著名的是我們之前在函數(shù)逼近中提到的truncated power basis與B-spline basis。我們這里十分簡(jiǎn)要的介紹一下B樣條,B樣條基下的函數(shù)逼近可以寫為:
其中
上式中否則取0.在R中splines包的函數(shù)bs()提供了B樣條估計(jì),其調(diào)用格式為:
bs(x, df = NULL, knots = NULL, degree = 3, intercept = FALSE, Boundary.knots = range(x))
對(duì)于參數(shù)df值得說(shuō)明的是df=degree+(Knots個(gè)數(shù)),attr(,“knots”)會(huì)顯示劃分點(diǎn),我們常用的3次B樣條公式: df=k+3 (不含常數(shù)項(xiàng))
我們以前面提到的essay data為例說(shuō)明B樣條的估計(jì)情況:
easy <- read.table("D:/R/data/easysmooth.dat", header = T)
x <- easy$X
y <- easy$Y
m.bsp <- lm(y ~ bs(x, df = 6))
s = function(x) {
(x^3) * sin((x + 3.4)/2)
}
x.plot = seq(min(x), max(x), length.out = 1000)
y.plot = s(x.plot)
plot(x, y, xlab = "Predictor", ylab = "Response")
lines(x.plot, y.plot, lty = 1, col = 1)
lines(x, fitted(m.bsp), lty = 2, col = 2)
attr(bs(x, df = 6), "knots") #可以將看到,節(jié)點(diǎn)在不指定的情況下默認(rèn)的是均勻樣條,當(dāng)然,我們可以根據(jù)散點(diǎn)圖給#出節(jié)點(diǎn)的具體選擇。
## 25% 50% 75%
## -1.875 -0.250 1.375
m.bsp1 <- lm(y ~ bs(x, df = 6, knots = c(-2.5, -1, 2)))
lines(x, fitted(m.bsp1), lty = 3, col = 3)
AIC(m.bsp)
## [1] 718.1
AIC(m.bsp1)
## [1] 727.4
summary(m.bsp)
##
## Call:
## lm(formula = y ~ bs(x, df = 6))
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.790 -0.911 -0.065 0.892 4.445
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.816 0.622 2.92 0.0039 **
## bs(x, df = 6)1 -10.552 1.161 -9.09 < 2e-16 ***
## bs(x, df = 6)2 -7.127 0.755 -9.44 < 2e-16 ***
## bs(x, df = 6)3 0.813 0.926 0.88 0.3808
## bs(x, df = 6)4 -4.056 0.859 -4.72 4.5e-06 ***
## bs(x, df = 6)5 5.781 0.967 5.98 1.1e-08 ***
## bs(x, df = 6)6 -3.505 0.865 -4.05 7.4e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.42 on 193 degrees of freedom
## Multiple R-squared: 0.824, Adjusted R-squared: 0.819
## F-statistic: 151 on 6 and 193 DF, p-value: <2e-16
可以看到B樣條基本很接近真實(shí)函數(shù)了,summary(m.bsp)報(bào)告了各個(gè)系數(shù)的估計(jì),帶入f(x)的B樣條基展開(kāi)中即可得到一個(gè)顯式的表達(dá)式。
光滑樣條
雖然B樣條已經(jīng)很好了,但是理論與實(shí)踐都表明直接用最小二乘去求解系數(shù)效果不好,容易過(guò)擬合。一個(gè)可能的改進(jìn)是光滑樣條。所謂的光滑樣條,就是在求解最小二乘時(shí)給估計(jì)函數(shù)f(x)加上了一定的懲罰,這個(gè)有點(diǎn)類似壓縮估計(jì)。我們這里采用最常用的光滑性懲罰,得到函數(shù)f(x)的估計(jì)m(x)滿足如下的懲罰最小二乘:
在R的splines包中提供了函數(shù)smooth.spline來(lái)求解光滑樣條
easy <- read.table("D:/R/data/easysmooth.dat", header = T) x <- easy$X y <- easy$Y s.hat <- smooth.spline(x, y) ## OUTPUT s.hat
## Call: ## smooth.spline(x = x, y = y) ## ## Smoothing Parameter spar= 0.7251 lambda= 0.0002543 (12 iterations) ## Equivalent Degrees of Freedom (Df): 11.56 ## Penalized Criterion: 380.9 ## GCV: 2.145
## OUTPUT PLOTS s <- function(x) { (x^3) * sin((x + 3.4)/2) } x.plot = seq(min(x), max(x), length.out = 1000) y.plot = s(x.plot) plot(x, y, xlab = "Predictor", ylab = "Response") lines(x.plot, y.plot, lty = 1, col = 1) lines(s.hat, lty = 2, col = 2)
最后我們來(lái)講一下怎么計(jì)算出m(x),這里我們使用Reinsch algorithm。Step 1: 計(jì)算向量Q′y.Step 2: 找到一個(gè)非0對(duì)角陣R+λQ′Q使得它可以進(jìn)行Cholesky分解,有因子L,DStep 3: 解方程:(R+λQ′Q)γ=Q′yStep 4: 得到估值m=y?αQγ.上面的Q與R可以表示為:
上面的t表示節(jié)點(diǎn)。我們不妨來(lái)算算essay data的例子:
easy <- read.table("D:/R/data/easysmooth.dat", header = T)
x <- easy$X
y <- easy$Y
n <- length(y)
knots <- seq(min(x), max(x), length = n + 1)
h <- knots[-1] - knots[-n]
Q <- matrix(0, n, n - 2)
R <- matrix(0, n - 2, n - 2)
for (i in 1:(n - 2)) {
Q[i, i] = 1/h[i]
Q[i + 1, i] = -1/h[i] - 1/h[i + 1]
Q[i + 2, i] = 1/h[i + 1]
}
for (i in 2:(n - 2)) {
R[i, i] = 1/6 * (h[i] + h[i + 1])
R[i - 1, i] = h[i]/6
R[i, i - 1] = h[i]/6
}
R[1, 1] = 1/6 * (h[1] + h[2])
lambda <- 0.2
A <- R + lambda * t(Q) %*% Q
gamma <- solve(A, t(Q) %*% as.matrix(y))
g <- as.matrix(y) - lambda * Q %*% gamma
s <- function(x) {
(x^3) * sin((x + 3.4)/2)
}
x.plot <- seq(min(x), max(x), length.out = 1000)
y.plot <- s(x.plot)
plot(x, y, xlab = "Predictor", ylab = "Response")
lines(x.plot, y.plot, lty = 1, col = 1)
lines(x, g, lty = 2, col = 2)
在懲罰系數(shù)為0.2的情況下,擬合還是不壞的,不是嗎?至于為什么可以這樣算,我們只要注意到\int [m^{''}(x)]dx=m^'(x_i)QR^{-1}Q^'m(x_i),估計(jì)的問(wèn)題就與我們十分熟悉的lasso,嶺回歸十分相像了。
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無(wú)論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫(kù)管理中,“大表” 始終是性能優(yōu)化繞不開(kāi)的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫(kù)表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開(kāi)始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫(kù)表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫(kù))處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場(chǎng)景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對(duì)象的 text 與 content:區(qū)別、場(chǎng)景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請(qǐng)求開(kāi)發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫(kù)表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請(qǐng)求工具對(duì)比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請(qǐng)求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問(wèn)題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問(wèn)題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營(yíng)問(wèn)題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過(guò)程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營(yíng)銷案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見(jiàn)頂” 的當(dāng)下,精準(zhǔn)營(yíng)銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價(jià)值 在數(shù)據(jù)驅(qū)動(dòng)決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實(shí)踐到業(yè)務(wù)價(jià)值挖掘 在數(shù)據(jù)分析場(chǎng)景中,聚類分析作為 “無(wú)監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價(jià)值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡(jiǎn)單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10