
如何解決機(jī)器學(xué)習(xí)中數(shù)據(jù)不平衡問題
這幾年來,機(jī)器學(xué)習(xí)和數(shù)據(jù)挖掘非?;馃?,它們逐漸為世界帶來實際價值。與此同時,越來越多的機(jī)器學(xué)習(xí)算法從學(xué)術(shù)界走向工業(yè)界,而在這個過程中會有很多困難。數(shù)據(jù)不平衡問題雖然不是最難的,但絕對是最重要的問題之一。
一、數(shù)據(jù)不平衡
在學(xué)術(shù)研究與教學(xué)中,很多算法都有一個基本假設(shè),那就是數(shù)據(jù)分布是均勻的。當(dāng)我們把這些算法直接應(yīng)用于實際數(shù)據(jù)時,大多數(shù)情況下都無法取得理想的結(jié)果。因為實際數(shù)據(jù)往往分布得很不均勻,都會存在“長尾現(xiàn)象”,也就是所謂的“二八原理”。下圖是新浪微博交互分布情況:
可以看到大部分微博的總互動數(shù)(被轉(zhuǎn)發(fā)、評論與點贊數(shù)量)在0-5之間,交互數(shù)多的微博(多于100)非常之少。如果我們?nèi)ヮA(yù)測一條微博交互數(shù)所在檔位,預(yù)測器只需要把所有微博預(yù)測為第一檔(0-5)就能獲得非常高的準(zhǔn)確率,而這樣的預(yù)測器沒有任何價值。那如何來解決機(jī)器學(xué)習(xí)中數(shù)據(jù)不平衡問題呢?這便是這篇文章要討論的主要內(nèi)容。
嚴(yán)格地講,任何數(shù)據(jù)集上都有數(shù)據(jù)不平衡現(xiàn)象,這往往由問題本身決定的,但我們只關(guān)注那些分布差別比較懸殊的;另外,雖然很多數(shù)據(jù)集都包含多個類別,但這里著重考慮二分類,因為解決了二分類中的數(shù)據(jù)不平衡問題后,推而廣之就能得到多分類情況下的解決方案。綜上,這篇文章主要討論如何解決二分類中正負(fù)樣本差兩個及以上數(shù)量級情況下的數(shù)據(jù)不平衡問題。
不平衡程度相同(即正負(fù)樣本比例類似)的兩個問題,解決的難易程度也可能不同,因為問題難易程度還取決于我們所擁有數(shù)據(jù)有多大。比如在預(yù)測微博互動數(shù)的問題中,雖然數(shù)據(jù)不平衡,但每個檔位的數(shù)據(jù)量都很大——最少的類別也有幾萬個樣本,這樣的問題通常比較容易解決;而在癌癥診斷的場景中,因為患癌癥的人本來就很少,所以數(shù)據(jù)不但不平衡,樣本數(shù)還非常少,這樣的問題就非常棘手。綜上,可以把問題根據(jù)難度從小到大排個序:大數(shù)據(jù)+分布均衡<大數(shù)據(jù)+分布不均衡<小數(shù)據(jù)+數(shù)據(jù)均衡<小數(shù)據(jù)+數(shù)據(jù)不均衡。對于需要解決的問題,拿到數(shù)據(jù)后,首先統(tǒng)計可用訓(xùn)練數(shù)據(jù)有多大,然后再觀察數(shù)據(jù)分布情況。經(jīng)驗表明,訓(xùn)練數(shù)據(jù)中每個類別有5000個以上樣本,數(shù)據(jù)量是足夠的,正負(fù)樣本差一個數(shù)量級以內(nèi)是可以接受的,不太需要考慮數(shù)據(jù)不平衡問題(完全是經(jīng)驗,沒有理論依據(jù),僅供參考)。
二、如何解決
解決這一問題的基本思路是讓正負(fù)樣本在訓(xùn)練過程中擁有相同的話語權(quán),比如利用采樣與加權(quán)等方法。為了方便起見,我們把數(shù)據(jù)集中樣本較多的那一類稱為“大眾類”,樣本較少的那一類稱為“小眾類”。
1. 采樣
采樣方法是通過對訓(xùn)練集進(jìn)行處理使其從不平衡的數(shù)據(jù)集變成平衡的數(shù)據(jù)集,在大部分情況下會對最終的結(jié)果帶來提升。
采樣分為上采樣(Oversampling)和下采樣(Undersampling),上采樣是把小種類復(fù)制多份,下采樣是從大眾類中剔除一些樣本,或者說只從大眾類中選取部分樣本。
隨機(jī)采樣最大的優(yōu)點是簡單,但缺點也很明顯。上采樣后的數(shù)據(jù)集中會反復(fù)出現(xiàn)一些樣本,訓(xùn)練出來的模型會有一定的過擬合;而下采樣的缺點顯而易見,那就是最終的訓(xùn)練集丟失了數(shù)據(jù),模型只學(xué)到了總體模式的一部分。
上采樣會把小眾樣本復(fù)制多份,一個點會在高維空間中反復(fù)出現(xiàn),這會導(dǎo)致一個問題,那就是運(yùn)氣好就能分對很多點,否則分錯很多點。為了解決這一問題,可以在每次生成新數(shù)據(jù)點時加入輕微的隨機(jī)擾動,經(jīng)驗表明這種做法非常有效。
因為下采樣會丟失信息,如何減少信息的損失呢?第一種方法叫做EasyEnsemble,利用模型融合的方法(Ensemble):多次下采樣(放回采樣,這樣產(chǎn)生的訓(xùn)練集才相互獨立)產(chǎn)生多個不同的訓(xùn)練集,進(jìn)而訓(xùn)練多個不同的分類器,通過組合多個分類器的結(jié)果得到最終的結(jié)果。第二種方法叫做BalanceCascade,利用增量訓(xùn)練的思想(Boosting):先通過一次下采樣產(chǎn)生訓(xùn)練集,訓(xùn)練一個分類器,對于那些分類正確的大眾樣本不放回,然后對這個更小的大眾樣本下采樣產(chǎn)生訓(xùn)練集,訓(xùn)練第二個分類器,以此類推,最終組合所有分類器的結(jié)果得到最終結(jié)果。第三種方法是利用KNN試圖挑選那些最具代表性的大眾樣本,叫做NearMiss,這類方法計算量很大,感興趣的可以參考“Learning from Imbalanced Data”這篇綜述的3.2.1節(jié)。
2. 數(shù)據(jù)合成
數(shù)據(jù)合成方法是利用已有樣本生成更多樣本,這類方法在小數(shù)據(jù)場景下有很多成功案例,比如醫(yī)學(xué)圖像分析等。
其中最常見的一種方法叫做SMOTE,它利用小眾樣本在特征空間的相似性來生成新樣本。對于小眾樣本 xi∈Sminxi∈Smin ,從它屬于小眾類的K近鄰中隨機(jī)選取一個樣本點 ^xix^i ,生成一個新的小眾樣本 xnewxnew : xnew=xi+(^x?xi)×δxnew=xi+(x^?xi)×δ ,其中 δ∈[0,1]δ∈[0,1] 是隨機(jī)數(shù)。
上圖是SMOTE方法在 K=6
近鄰下的示意圖,黑色方格是生成的新樣本。
SMOTE為每個小眾樣本合成相同數(shù)量的新樣本,這帶來一些潛在的問題:一方面是增加了類之間重疊的可能性,另一方面是生成一些沒有提供有益信息的樣本。為了解決這個問題,出現(xiàn)兩種方法:Borderline-SMOTE與ADASYN。
Borderline-SMOTE的解決思路是尋找那些應(yīng)該為之合成新樣本的小眾樣本。即為每個小眾樣本計算K近鄰,只為那些K近鄰中有一半以上大眾樣本的小眾樣本生成新樣本。直觀地講,只為那些周圍大部分是大眾樣本的小眾樣本生成新樣本,因為這些樣本往往是邊界樣本。確定了為哪些小眾樣本生成新樣本后再利用SMOTE生成新樣本。
ADASYN的解決思路是根據(jù)數(shù)據(jù)分布情況為不同小眾樣本生成不同數(shù)量的新樣本。首先根據(jù)最終的平衡程度設(shè)定總共需要生成的新小眾樣本數(shù)量 GG ,然后為每個小眾樣本 xixi 計算分布比例 ΓiΓi : Γi=Δi/KZΓi=Δi/KZ ,其中 ΓiΓi 是 xixi K近鄰中大眾樣本的數(shù)量, ZZ 用來歸一化使得 ∑Γi=1∑Γi=1 ,最后為小眾樣本 xixi 生成新樣本的個數(shù)為 gi=Γi×Ggi=Γi×G ,確定個數(shù)后再利用SMOTE生成新樣本。
3. 加權(quán)
除了采樣和生成新數(shù)據(jù)等方法,我們還可以通過加權(quán)的方式來解決數(shù)據(jù)不平衡問題,即對不同類別分錯的代價不同,如下圖:
橫向是真實分類情況,縱向是預(yù)測分類情況,C(i,j)是把真實類別為j的樣本預(yù)測為i時的損失,我們需要根據(jù)實際情況來設(shè)定它的值。
這種方法的難點在于設(shè)置合理的權(quán)重,實際應(yīng)用中一般讓各個分類間的加權(quán)損失值近似相等。當(dāng)然這并不是通用法則,還是需要具體問題具體分析。
4. 一分類
對于正負(fù)樣本極不平衡的場景,我們可以換一個完全不同的角度來看待問題:把它看做一分類(One Class Learning)或異常檢測(Novelty Detection)問題。這類方法的重點不在于捕捉類間的差別,而是為其中一類進(jìn)行建模,經(jīng)典的工作包括One-class SVM等。
三、如何選擇
解決數(shù)據(jù)不平衡問題的方法有很多,上面只是一些最常用的方法,而最常用的方法也有這么多種,如何根據(jù)實際問題選擇合適的方法呢?接下來談?wù)勔恍┪业慕?jīng)驗。
在正負(fù)樣本都非常之少的情況下,應(yīng)該采用數(shù)據(jù)合成的方式;在負(fù)樣本足夠多,正樣本非常之少且比例及其懸殊的情況下,應(yīng)該考慮一分類方法;在正負(fù)樣本都足夠多且比例不是特別懸殊的情況下,應(yīng)該考慮采樣或者加權(quán)的方法。
采樣和加權(quán)在數(shù)學(xué)上是等價的,但實際應(yīng)用中效果卻有差別。尤其是采樣了諸如Random Forest等分類方法,訓(xùn)練過程會對訓(xùn)練集進(jìn)行隨機(jī)采樣。在這種情況下,如果計算資源允許上采樣往往要比加權(quán)好一些。
另外,雖然上采樣和下采樣都可以使數(shù)據(jù)集變得平衡,并且在數(shù)據(jù)足夠多的情況下等價,但兩者也是有區(qū)別的。實際應(yīng)用中,我的經(jīng)驗是如果計算資源足夠且小眾類樣本足夠多的情況下使用上采樣,否則使用下采樣,因為上采樣會增加訓(xùn)練集的大小進(jìn)而增加訓(xùn)練時間,同時小的訓(xùn)練集非常容易產(chǎn)生過擬合。對于下采樣,如果計算資源相對較多且有良好的并行環(huán)境,應(yīng)該選擇Ensemble方法。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學(xué)領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學(xué)計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學(xué)計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務(wù)價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導(dǎo)向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10