
數(shù)據(jù)分析實(shí)例--R語(yǔ)言如何對(duì)垃圾郵件進(jìn)行分類(lèi)
Structure of a Data Analysis
1 數(shù)據(jù)分析的步驟
l Define the question
l Define the ideal data set
l Determine what data you can access
l Obtain the data
l Clean the data
l Exploratory data analysis
l Statistical prediction/model
l Interpret results
l Challenge results
l Synthesize/write up results
l Create reproducible code
2 A sample
1) 問(wèn)題.
Can I automatically detect emails that are SPAM or not?
2) 具體化問(wèn)題
Can I use quantitative characteristics of the emails to classify them as SPAM/HAM?
3) 獲取數(shù)據(jù)
http://search.r-project.org/library/kernlab/html/spam.html
4) 取樣
#if it isn't installed,please install the package first.
library(kernlab)
data(spam)
#perform the subsampling
set.seed(3435)
trainIndicator =rbinom(4601,size = 1,prob = 0.5)
table(trainIndicator)
trainSpam = spam[trainIndicator == 1, ]
testSpam = spam[trainIndicator == 0, ]
5) 初步分析
a) Names:查看的列名
names(trainSpam)
b) Head:查看前六行
head(trainSpam)
c) Summaries:匯總
table(trainSpam$type)
d) Plots:畫(huà)圖,查看垃圾郵件及非垃圾郵件的分布
plot(trainSpam$capitalAve ~ trainSpam$type)
上圖分布不明顯,我們?nèi)?duì)數(shù)后,再看看
plot(log10(trainSpam$capitalAve + 1) ~ trainSpam$type)
e) 尋找預(yù)測(cè)的內(nèi)在關(guān)系
plot(log10(trainSpam[, 1:4] + 1))
hCluster = hclust(dist(t(trainSpam[, 1:57])))
plot(hCluster)
太亂了.不能發(fā)現(xiàn)些什么。老方法不是取log看看
hClusterUpdated = hclust(dist(t(log10(trainSpam[, 1:55] + 1))))
plot(hClusterUpdated)
6) 統(tǒng)計(jì)預(yù)測(cè)及建模
trainSpam$numType = as.numeric(trainSpam$type) - 1
costFunction = function(x, y) sum(x != (y > 0.5))
cvError = rep(NA, 55)
library(boot)
for (i in 1:55) {
lmFormula = reformulate(names(trainSpam)[i], response = "numType")
glmFit = glm(lmFormula, family = "binomial", data = trainSpam)
cvError[i] = cv.glm(trainSpam, glmFit, costFunction, 2)$delta[2]
}
## Which predictor has minimum cross-validated error?
names(trainSpam)[which.min(cvError)]
7) 檢測(cè)
## Use the best model from the group
predictionModel = glm(numType ~ charDollar, family = "binomial", data = trainSpam)
## Get predictions on the test set
predictionTest = predict(predictionModel, testSpam)
predictedSpam = rep("nonspam", dim(testSpam)[1])
## Classify as `spam' for those with prob > 0.5
predictedSpam[predictionModel$fitted > 0.5] = "spam"
## Classification table 查看分類(lèi)結(jié)果
table(predictedSpam, testSpam$type)
分類(lèi)錯(cuò)誤率:0.2243 =(61 + 458)/(1346 + 458 + 61 + 449)
8) Interpret results(結(jié)果解釋?zhuān)?
The fraction of charcters that are dollar signs can be used to predict if an email is Spam
Anything with more than 6.6% dollar signs is classified as Spam
More dollar signs always means more Spam under our prediction
Our test set error rate was 22.4%
9) Challenge results
10) Synthesize/write up results
11) Create reproducible code
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無(wú)論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫(kù)管理中,“大表” 始終是性能優(yōu)化繞不開(kāi)的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫(kù)表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開(kāi)始提取前,需先判斷 TIF 文件的類(lèi)型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專(zhuān)業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫(kù)表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫(kù))處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場(chǎng)景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專(zhuān)業(yè)操盤(pán)手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對(duì)象的 text 與 content:區(qū)別、場(chǎng)景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請(qǐng)求開(kāi)發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤(pán)手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫(kù)表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請(qǐng)求工具對(duì)比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請(qǐng)求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問(wèn)題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問(wèn)題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營(yíng)問(wèn)題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過(guò)程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營(yíng)銷(xiāo)案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見(jiàn)頂” 的當(dāng)下,精準(zhǔn)營(yíng)銷(xiāo)成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價(jià)值 在數(shù)據(jù)驅(qū)動(dòng)決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類(lèi)分析:從操作實(shí)踐到業(yè)務(wù)價(jià)值挖掘 在數(shù)據(jù)分析場(chǎng)景中,聚類(lèi)分析作為 “無(wú)監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價(jià)值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡(jiǎn)單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10