
R語言時(shí)間數(shù)據(jù)處理之lubridate包
在我們處理一些時(shí)間序列數(shù)據(jù)時(shí),經(jīng)常會(huì)碰到各種時(shí)間數(shù)據(jù),比如“2016-03-03”。很多時(shí)候我們需要提取出其中的年、月、日甚至是小時(shí)、分、秒,從而可以方便的進(jìn)行比較、篩選等操作。如果我們自己去實(shí)現(xiàn)上述功能,可能會(huì)寫一個(gè)字符串的提取函數(shù),來確定相應(yīng)的時(shí)間單位值。但是,由于時(shí)間數(shù)據(jù)格式多樣,總會(huì)碰到一些問題。還好lubridate這個(gè)包已經(jīng)幫我實(shí)現(xiàn)了各種功能,功能簡單但方便快捷,下面進(jìn)行介紹:
library(lubridate)
返回時(shí)間值
首先,lubridate函數(shù)的方便之處在于無論年月日之間以什么間隔符分隔,它總能找到正確的值且返回的是數(shù)字值,比如:
> year("2016-10-24")
[1] 2016
>year("2016/10/24")
[1] 2016
> month("2016/10/24")
[1] 10>
day("2016/10/24")
[1] 24
我們可以看到,直接用year(),month(),day()函數(shù)就可以提取相應(yīng)的數(shù)值,同樣的函數(shù)還有hour(),minute(),second()等:
> hour("2011-08-10 14:20:01")
[1] 14>
minute("2011-08-10 14:20:01")
[1] 20>
second("2011-08-10 14:20:01")
[1] 1
同時(shí),lubridate還提供了函數(shù)幫助處理不同排列順序的年月日數(shù)據(jù):
> ymd("20110604")
[1] "2011-06-04"
> mdy("06-04-2011")
[1] "2011-06-04"
> dmy("04/06/2011")
[1] "2011-06-04"
ymd,mdy,dmy分別表示了三種常見的年月日排列方式,通過這種方式我們就可以把不同的日期數(shù)據(jù)都轉(zhuǎn)化為標(biāo)準(zhǔn)的日期數(shù)據(jù)。
時(shí)間數(shù)據(jù)運(yùn)算
此外我們還可以用對(duì)時(shí)間數(shù)據(jù)進(jìn)行加減,這也是很有用的,因?yàn)橛袝r(shí)候我們要判斷兩個(gè)時(shí)間之間的間隔是否超過了某個(gè)值:
> minutes(2) ## period
[1] "2M 0S"
> dminutes(2) ## duration
[1] "120s (~2 minutes)"
我們可以看到有兩個(gè)函數(shù):minutes(),dminutes(),minutes(2)函數(shù)表示的2個(gè)整分鐘的概念,而dminutes()則是具體120秒的概念。這兩者之間有何不同呢?可以看下面的例子:
> leap_year(2011) ## regular year
[1] FALSE
> ymd(20110101) + dyears(1)
[1] "2012-01-01"
> ymd(20110101) + years(1)
[1] "2012-01-01"
> leap_year(2012) ## leap year
[1] TRUE
> ymd(20120101) + dyears(1)
[1] "2012-12-31"
ymd(20120101) + years(1)
> [1] "2013-01-01"
leap_year()函數(shù)可以判斷是否是閏年,而通過上述返回結(jié)果我們可以知道,因?yàn)閐years(1)表示的365天,所以從2012-01-01一個(gè)dyears(1),返回值是2012-12-31,而years(1)則是一個(gè)整年的概念,無論是閏年還是非閏年,加上一個(gè)years(1)都能返回下一年的相同月日的那一天,在這個(gè)例子里就反悔了2013-01-01。
時(shí)間區(qū)間
lubridate還允許我們定義一個(gè)時(shí)間區(qū)間,例如:
> arrive<-"2011-08-10 14:00:00"
> leave<-"2011-08-10 14:00:05"
> int<-interval(arrive,leave)
[1] 2011-08-10 14:00:00 UTC--2011-08-10 14:00:05 UTC
兩個(gè)時(shí)間段是由--相連的,UTC表示時(shí)區(qū),lubridate允許我們?cè)诮o時(shí)間數(shù)據(jù)賦值的時(shí)候加上時(shí)區(qū)這一項(xiàng),由于在日常生活中使用可能性較小,這篇文章里就不涉及了。數(shù)據(jù)分析師培訓(xùn)
> arrive1<-"2011-08-10 13:50:00"
> leave1<-"2011-08-10 14:00:09"
> int1<-interval(arrive1,leave1)
> int1 %within% int
[1] FALSE
> int %within% int1
[1] TRUE
有了時(shí)間區(qū)間的定義,我們還可以判斷一個(gè)時(shí)間區(qū)間是否在另一個(gè)時(shí)間區(qū)間里面,用"%within%"操作符。
> as.period(int1)
[1] "10M 9S"
> int1 / dminutes(1)
[1] 10.15
如上還可以查看或計(jì)算一個(gè)時(shí)間區(qū)間的長度。
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對(duì)象的 text 與 content:區(qū)別、場景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請(qǐng)求開發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請(qǐng)求工具對(duì)比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請(qǐng)求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營問題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價(jià)值 在數(shù)據(jù)驅(qū)動(dòng)決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實(shí)踐到業(yè)務(wù)價(jià)值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價(jià)值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10