
互聯(lián)網(wǎng)運營數(shù)據(jù)分析必須掌握的十個經(jīng)典方法
互聯(lián)網(wǎng)運營數(shù)據(jù)分析必須掌握的10個經(jīng)典方法!用好這10個方法,秒做互聯(lián)網(wǎng)運營數(shù)據(jù)分析的大牛!眼花繚亂的東西很多,真正派上用場的,卻不見得是那些看起來炫酷的。很多方法樸實無華,卻解決大量的問題。
下面十個方法都是我這么多年做互聯(lián)網(wǎng)運營分析時一定會用到的最經(jīng)典的方法。這些方法如果爛熟于心,其實互聯(lián)網(wǎng)運營分析的最核心部分也就掌握差不多了。真沒那么復雜。
我們從第十個方法倒著講,重要性并無優(yōu)劣之分,但壓軸的,往往是最重要的。
方法十:Link Tag的流量標記
Link tag標記流量源頭 ,絕對是所有方法中最為基本重要的一種。這種方法不僅僅適用于網(wǎng)站的流量來源,也同樣適用于app下載來源的監(jiān)測(但后者需要滿足一定的條件)。
Link tag的意思,是在流量源頭的鏈出鏈接上(鏈出URL上)加上尾部參數(shù)。這些參數(shù)不僅不會影響鏈接的跳轉,而且能夠標明這個鏈接所屬的流量源是什么(理論上能夠標明流量源的屬性數(shù)是無限的)。
Link tag不能單獨起作用,必須要在網(wǎng)站分析工具或者app分析工具的配合下工作。
Link tag是流量分析的基礎,要嚴肅的分析流量,不僅僅是常規(guī)分析,還包括歸因分析(attribution analysis),都需要使用link tag的方法。
方法九:轉化漏斗
分析轉化的基本模型是轉化漏斗(conversion funnel),這個大家都應該很熟悉了。
轉化漏斗最常見的是把最終的轉化設置為某種目的的實現(xiàn),最典型的就是實現(xiàn)銷售,所以大家很多時候把轉化和銷售是混為一談。但轉化漏斗的最終轉化也可以是其他任何目的的實現(xiàn),比如一次使用app的時間超過10分鐘(session duration >10minutes)。對于增長黑客而言,構建漏斗是最為常見的工作。
漏斗幫助我們解決兩方面的問題,第一、在一個過程中是否發(fā)生泄漏,如果有泄漏,我們能在漏斗中看到,并且能夠通過進一步的分析堵住這個泄漏點;第二、在一個過程中是否出現(xiàn)了其他不應該出現(xiàn)的過程,造成轉化主進程受到損害。
漏斗的構建很簡單,無論web還是app,都是最好用的方法之一。但漏斗使用的奧秘則很豐富。而且漏斗方法還會和其他方法混合使用,樂趣無窮。我在互聯(lián)網(wǎng)數(shù)據(jù)運營的課程中也會具體講解。
方法八:微轉化
人人都懂轉化漏斗,但不是所有人都關注微轉化。但是你想指望一個轉化漏斗不斷提升轉化率太困難了,而微轉化卻可以做到。轉化漏斗解決的是轉化過程中的大問題,但大問題總是有限的,這些問題搞定后,你還是需要對你的轉化進行持續(xù)優(yōu)化,這個時候必須要用到微轉化。
微轉化是指在轉化必經(jīng)過程之外,但同樣會對轉化產(chǎn)生影響的各種元素。這些元素與用戶的互動,左右了用戶的感受,也直接或者間接的影響了用戶的決定。
比如,商品的一些圖片展示,并不是轉化過程中必須要看的,但是它們的存在,是否會對用戶的購買決定產(chǎn)生影響?這些圖片就是微轉化元素。
個人認為,研究微轉化比研究轉化更好玩。有一些案例,課堂上跟大家講。
方法七:合并同類項
合并同類項是大家容易忽視的常用方法。我們往往非常重視細分,但有的時候我們卻需要了解更宏觀的表現(xiàn)。
合并同類項就是這樣的方法。舉一個例子,我問你,一個電子商務網(wǎng)站,所有商品頁的整體表現(xiàn)如何?它們作為一個整體的bounce rate怎么樣,停留時間怎么樣,用戶滿意度怎么樣等等,你能夠回答嗎?
如果我們查看每一個商品頁的表現(xiàn),然后再把所有一個一個頁面的數(shù)據(jù)加總起來作分析,就太麻煩了(根本無法實現(xiàn)分析)。這個時候,我們必須要合并同類項。
如何合并?利用分析工具的過濾工具或者查找替換功能。不支持這樣功能的工具你可以考慮扔掉了,因為這根本不應放在增長黑客的專業(yè)裝備箱中。
合并同類項還有很多用途,比如你要了解web或者app一個版塊(頻道)的整體表現(xiàn),或者你要了解整個導航體系的使用情況,這都是必須使用的方法。
方法六:AB測試
增長黑客不談AB測試是恥辱。
通過數(shù)據(jù)優(yōu)化運營和產(chǎn)品的邏輯很簡單——看到問題,想個主意,做出原型,測試定型。
比如,你發(fā)現(xiàn)轉化漏斗中間有一個漏洞,于是你想,一定是商品價格不對頭,讓大家不想買了。你看到了問題——漏斗,而且你也想出了主意——改變定價。
但是這個主意靠不靠譜,可不是你想出來的,必須得讓真實的用戶用。于是你用AB測試,一部分的用戶還是看到老價格,另外一部分用戶看到新價格。若是你的主意真的管用,新價格就應該有更好的轉化。若真如此,新的價格就被確定下來(定型),開始在新的轉化高度上運行,直到你又發(fā)現(xiàn)一個新的需要改進的問題。
增長黑客的一個主要思想之一,是不要做一個大而全的東西,而是不斷做出能夠快速驗證的小而精的東西。快速驗證,如何驗證的?主要方法就是AB測試。
今天的互聯(lián)網(wǎng)世界,由于流量紅利時代的結束,對于快速迭代的要求大大提升了,這也使我們更加在意測試的力量。
在web上進行AB測試很簡單,在app上難度要高很多,但解決方法還是很多的。國外那些經(jīng)典app,那些賣錢游戲,幾乎天天都在AB測試。
方法五:熱圖及對比熱圖
熱圖是一個大家都喜歡的功能,它是最直觀的記錄用戶與產(chǎn)品界面交互的工具。不過真用起來,可能大家很少真正去深究吧!
熱圖,對于web、app的分析,都非常重要!今天的熱圖相對于過去的熱圖,功能得到了極大的提升。
在web端,過去一些解決不好的問題,比如只能看鏈接的被點擊情況,點擊位置錯位,對浮層部分點擊的標記,對鏈出鏈接的標記等等,現(xiàn)在已經(jīng)有好的工具能夠提供很多新的辦法去解決。在app端則分為兩種情況,內(nèi)容類的app,對于熱圖的需求較弱;但工具類的app對于熱圖的需求則很顯著。前者的screen中以并列內(nèi)容為主,且內(nèi)容動態(tài)變換,熱圖應用價值不高;后者則特別需要通過熱圖反映用戶的使用習慣,并結合app內(nèi)其他的engagement的分析(in-app engagement)來優(yōu)化功能和布局設計,所以熱圖對它們很重要。
要想熱圖用的好,一個很重要的點在于你幾乎不能單獨使用一個熱圖就想解決問題。我常常用集中對比熱圖的方法。
其一,多種熱圖的對比分析,尤其是點擊熱圖(觸摸熱圖)、閱讀線熱圖、停屏熱圖的對比分析;
其二,細分人群的熱圖對比分析,例如不同渠道、新老用戶、不同時段、AB測試的熱圖對比等等。
其三,深度不同的互動,所反映的熱圖也是不同的。這種情況也值得利用熱圖對比功能。例如點擊熱圖與轉化熱圖的對比分析等。
總之,分析很多用戶交互的時候,熱圖簡直是神器,只不過,熱圖真的比你看到的要更強大!
方法四:Event Tracking(事件追蹤)
互聯(lián)網(wǎng)運營數(shù)據(jù)分析的一個很重要的基礎是網(wǎng)站分析。今天的app分析、流量分析、渠道分析,還有后面要講到的歸因分析等等,都是在網(wǎng)站分析的基礎之上發(fā)展起來的。
但是,早期的網(wǎng)站分析有一個特點,就是對于用戶在頁面上互動行為的記錄,只能記錄下來一種,就是點擊http鏈接(點擊URL)。不過隨著技術的發(fā)展,頁面上不僅僅只有http鏈接,頁面上還有很多flash(現(xiàn)在flash都要被淘汰了)、Java的互動鏈接、視頻播放、鏈接到其他的web或者app的鏈接等等,用戶點擊這些東西就都無法被老方法記錄下來了。
不過,有問題就一定有方法,人們發(fā)明了event tracking來解決上面的問題。event tracking本質上是對這些特殊互動的定制化監(jiān)測,而由于是定制化,所以反而有了更多附加的好處,即可以額外添加對于這個活動的更多的說明(以event tracking這個方法的附件屬性的方式)。結果,這個方法甚至有些反客為主,即使是一些http鏈接,很多分析老手也喜歡把它們加上event tracking(技術上完全可行),以獲得更多的額外監(jiān)測屬性說明。
隨著app的出現(xiàn),由于app的特殊性(屏幕小,更強調在一個屏幕中完成互動),分析app的page(實際上應該是app的screen)間跳轉的重要性完全不如web上的page之間的跳轉,但分析app上的點擊行為的重要性則十分巨大,這就使我們分析in-app engagement的時候,必須大量依賴event,而相對較少使用screen。這就是說,在app端,event反而是主,page(更準確應該是screen)反而是輔!
這也是為什么,這個方法你必須要掌握的原因。
方法三:Cohort分析
Cohort分析還沒有一個所有人都統(tǒng)一使用的翻譯。有的說是隊列分析,有的說是世代分析,有的說是隊列時間序列分析。大家可以參考維基百科:https://zh.wikipedia.org/wiki/%E9%98%9F%E5%88%97%E7%A0%94%E7%A9%B6,找找自己覺得合適的譯名。
無論哪種叫法,cohort分析在有數(shù)據(jù)運營領域都變得十分重要。原因在于,隨著流量經(jīng)濟的退卻,精耕細作的互聯(lián)網(wǎng)運營特別需要仔細洞察留存情況。Cohort分析最大的價值也正在于此。Cohort分析通過對性質完全一樣的可對比群體的留存情況的比較,來發(fā)現(xiàn)哪些因素影響短、中、長期的留存。
Cohort分析受到歡迎的另一個原因是它用起來十分簡單,但卻十分直觀。相較于比較繁瑣的流失(churn)分析,RFM或者用戶聚類等,Cohort只用簡單的一個圖表,甚至連四則運算都不用,就直接描述了用戶在一段時間周期(甚至是整個LTV)的留存(或流失)變化情況。甚至,Cohort還能幫你做預測。
我總覺得cohort分析是最能體現(xiàn)簡單即美的一個典型方法。
方法二:Attribution(歸因)
歸因不是人人都聽說過,用好的更是寥寥無幾。 不過,考慮到人們購買某一樣東西的決策,可能受到多種因素(數(shù)字營銷媒體)的影響,比如看到廣告了解到這個商品的存在,利用搜索,進一步了解這個商品,然后在social渠道上看到這個商品的公眾號等等。這些因素的綜合,讓一個人下定了決心購買。
因此,很多時候,單一的廣告渠道并不是你打開客戶閘門的閥門,而是多種渠道共同作用的結果。
如何了解數(shù)字營銷渠道之間的這種先后關系或者相互作用?如何設置合理的數(shù)字營銷渠道的策略以促進這種關系?在評價一個渠道的時候,如何將歸因考慮在內(nèi)從而能夠更客觀的衡量?這些都需要用到歸因。
如果你是互聯(lián)網(wǎng)營銷的負責人,歸因分析是必不可少的分析方法。在我的課堂上,會特別多的篇幅講解這個方法。
方法一:細分
嚴格說,細分不是一種方法,它是一切分析的本源。所以它當之無愧要排名第一。
我經(jīng)常的口頭禪是,無細分、毋寧死。沒有細分你做什么分析呀。
細分有兩類,一類是一定條件下的區(qū)隔。如:在頁面中停留30秒以上的visit(session);或者只要北京地區(qū)的訪客等。其實就是過濾。另一類是維度(dimension)之間的交叉。如:北京地區(qū)的新訪問者。即分群(segmentation)。
細分幾乎幫助我們解決所有問題。比如,我們前面講的構建轉化漏斗,實際上就是把轉化過程按照步驟進行細分。流量渠道的分析和評估也需要大量用到細分的方法。
維度之間的交叉是比較體現(xiàn)一個人分析水平的細分方法。比如,我的朋友孫維(卡車之家的數(shù)據(jù)負責人),他將用戶的反饋作為event tracking的屬性(放在了event action屬性中),提交給GA,然后在自定義的報告中,將用戶反饋和用戶的其他行為交叉起來,從而看到有某一類反饋的用戶,他們的行為軌跡是什么,從而推測發(fā)生了什么問題。
分析跳出率時,我們也會把landing page和它的traffic source(流量源)進行交叉,以檢查高跳出率的表現(xiàn)是由著陸頁造成,還是由流量造成。這也是典型的維度交叉細分的應用。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉換:從基礎用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關聯(lián)查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結構數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結構數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預期算子的內(nèi)涵、作用與應用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結構數(shù)據(jù)特征價值的專業(yè)核心 表結構數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結構化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應用 在數(shù)據(jù)分析與統(tǒng)計學領域,假設檢驗是驗證研究假設、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結構數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結構數(shù)據(jù)(以 “行 - 列” 存儲的結構化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結構數(shù)據(jù)價值的核心操盤手 表格結構數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務邏輯:從規(guī)則拆解到數(shù)據(jù)把關的實戰(zhàn)指南 在業(yè)務系統(tǒng)落地過程中,“業(yè)務邏輯” 是連接 “需求設計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10