
下面的h(x)是要擬合的函數(shù),J(theta)損失函數(shù),theta是參數(shù),要迭代求解的值,theta求解出來了那最終要擬合的函數(shù)h(theta)就出來了。其中m是訓練集的記錄條數(shù),j是參數(shù)的個數(shù)。
1、批量梯度下降(BGD)的求解思路如下:
(1)將J(theta)對theta求偏導,得到每個theta對應的的梯度
(2)由于是要最小化風險函數(shù),所以按每個參數(shù)theta的梯度負方向,來更新每個theta
(3)從上面公式可以注意到,它得到的是一個全局最優(yōu)解,但是每迭代一步,都要用到訓練集所有的數(shù)據,如果m很大,那么可想而知這種方法的迭代速度??!所以,這就引入了另外一種方法,隨機梯度下降。
2、隨機梯度下降(SGD)的求解思路如下:
(1)上面的風險函數(shù)可以寫成如下這種形式,損失函數(shù)對應的是訓練集中每個樣本的粒度,而上面批量梯度下降對應的是所有的訓練樣本:
注意:cost不是cosine t 是costfunction的簡寫
(2)每個樣本的損失函數(shù),對theta求偏導得到對應梯度,來更新theta
(3)隨機梯度下降是通過每個樣本來迭代更新一次,如果樣本量很大的情況(例如幾十萬),那么可能只用其中幾萬條或者幾千條的樣本(每次迭代隨機選取一個樣本點,只是迭代次數(shù)比BGD要多),就已經將theta迭代到最優(yōu)解了,對比上面的批量梯度下降,迭代一次需要用到十幾萬訓練樣本,一次迭代不可能最優(yōu),如果迭代10次的話就需要遍歷訓練樣本10次。但是,SGD伴隨的一個問題是噪音較BGD要多,使得SGD并不是每次迭代都向著整體最優(yōu)化方向。對步長選擇敏感,可能會出現(xiàn)overshoot the minimum。
3、方法比較:
梯度下降法是批量更新算法,隨機梯度是在線算法
梯度法優(yōu)化的是經驗風險,隨機梯度法優(yōu)化的是泛化風險
梯度法可能陷入局部最優(yōu),隨機梯度可能找到全局最優(yōu)
梯度法對步長不敏感,隨機梯度對步長選擇敏感
梯度法對初始點(參數(shù))選擇敏感
4、對于上面的linear regression問題,與批量梯度下降對比,隨機梯度下降求解的會是最優(yōu)解嗎?
(1)批量梯度下降---最小化所有訓練樣本的損失函數(shù),使得最終求解的是全局的最優(yōu)解,即求解的參數(shù)是使得風險函數(shù)最小。
(2)隨機梯度下降---最小化每條樣本的損失函數(shù),雖然不是每次迭代得到的損失函數(shù)都向著全局最優(yōu)方向, 但是大的整體的方向是向全局最優(yōu)解的,最終的結果往往是在全局最優(yōu)解附近。(數(shù)學證明過程)
5、梯度下降用來求最優(yōu)解,哪些問題可以求得全局最優(yōu)?哪些問題可能局部最優(yōu)解?
最優(yōu)化問題對theta的分布是unimodal,即從圖形上面看只有一個peak,所以梯度下降最終求得的是全局最優(yōu)解。然而對于multimodal的問題,因為存在多個peak值,很有可能梯度下降的最終結果是局部最優(yōu)。數(shù)據分析師培訓
數(shù)據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉換:從基礎用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據處理中,日期格式轉換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關聯(lián)查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數(shù)據庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據分析師:表結構數(shù)據 “獲取 - 加工 - 使用” 全流程的賦能者 表結構數(shù)據(如數(shù)據庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預期算子的內涵、作用與應用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據分析師:解鎖表結構數(shù)據特征價值的專業(yè)核心 表結構數(shù)據(以 “行 - 列” 規(guī)范存儲的結構化數(shù)據,如數(shù)據庫表、Excel 表、 ...
2025-09-17Excel 導入數(shù)據含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應用 在數(shù)據分析與統(tǒng)計學領域,假設檢驗是驗證研究假設、判斷數(shù)據差異是否 “ ...
2025-09-16CDA 數(shù)據分析師:掌控表格結構數(shù)據全功能周期的專業(yè)操盤手 表格結構數(shù)據(以 “行 - 列” 存儲的結構化數(shù)據,如 Excel 表、數(shù)據 ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網絡請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據分析師:激活表格結構數(shù)據價值的核心操盤手 表格結構數(shù)據(如 Excel 表格、數(shù)據庫表)是企業(yè)最基礎、最核心的數(shù)據形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調用、數(shù)據爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據的科學計數(shù)法問題 為幫助 Python 數(shù)據從業(yè)者解決pd.read_csv讀取長浮點數(shù)據時的科學計數(shù)法問題 ...
2025-09-12CDA 數(shù)據分析師:業(yè)務數(shù)據分析步驟的落地者與價值優(yōu)化者 業(yè)務數(shù)據分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務邏輯:從規(guī)則拆解到數(shù)據把關的實戰(zhàn)指南 在業(yè)務系統(tǒng)落地過程中,“業(yè)務邏輯” 是連接 “需求設計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據驅動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據分析師與戰(zhàn)略 / 業(yè)務數(shù)據分析:概念辨析與協(xié)同價值 在數(shù)據驅動決策的體系中,“戰(zhàn)略數(shù)據分析”“業(yè)務數(shù)據分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據聚類分析:從操作實踐到業(yè)務價值挖掘 在數(shù)據分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據解讀到決策支撐的價值導向 統(tǒng)計模型作為數(shù)據分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10